
CONTENTS
Introduction

Notation

The Long List of Functions & Statements

Functions Listed by Use:

Arithmetic Functions

Clipboard Functions

DDE Functions

Directory Management Functions

Disk Drive Functions

Displaying Information

File Management

Inputting Information

Menu Functions (Special)

Miscellaneous Functions

Multimedia Functions

Network Functions

Process Control Functions

Program Management Functions

String Handling Functions

System Information Functions

Window Management Functions

About The WIL Online Reference

Linked References. Hypertext

Changing display colors of reference topics

Searching for topics

Returning to previous topics

Making annotations for single or group use

Using bookmarks to save time

Copying Code Samples

MENU FILES

About Menu Files

Menu File Structure (a tutorial)

Modifying Menus

Menu Hotkeys

WIL TUTORIAL

Functions and Parameters

Displaying Text

Getting Input

Using Variables

Making Decisions

Branching

Exploring WIL

Display and Input

Manipulating Windows

Files and Directories

Selecting from Lists

Sending Keystrokes to Programs

Advanced Techniques

Recovering from Cancel

Aborting WIL Processing

Default Program for Unknown Extension

Partial Window Names

Sounds

Programming Reference

Programming Style in WIL

Language Components

Integer Constants

String Constants

Predefined Constants-Complete List

Identifiers

Lists

Operators

Statements

Error Handling

General Methods
Error List

INTRODUCTION
WIL (Windows Interface Language) is a powerful, yet easy-to-learn, procedural language, which provides
a rich set of functions to Windows users. It can:

· Run Windows and DOS programs.

· Send keystrokes directly to Windows applications.

· Rearrange, resize, hide, and close windows.

· Run programs either concurrently or sequentially.

· Display information to the user in various formats.

· Prompt the user for any needed input.

· Present scrollable file and directory lists.

· Copy, move, delete, and rename files.

· Read and write files directly.

· Copy text to and from the Clipboard.

· Perform string and arithmetic operations.

· Make branching decisions based upon numerous factors.

And much, much more.

About This Online Reference Guide

The WIL Language for Windows is not a stand-alone product. Rather, it is an accessory to a range of
Windows applications.

This user's guide is a reference for the WIL language itself, as well as a guide to creating basic WIL
programs.

Because the WIL language is used by widely differing applications, it can be used in various ways. This
guide covers the general functions common to applications that use WIL. Specific functions and
operations are in your specific application's manual.

In all cases, your product-specific documentation supersedes the information provided in this online
computer reference.

Applications can use WIL in two main ways: menu and batch. In a menu system, WIL commands are
defined in one or more menu files, each of which is a list of different tasks, or menu items. On the
other hand, a batch system contains each task in a separate batch file.

In this manual, we use the term WIL program to refer to either an individual menu item or to a complete
batch file.

We will use the term WIL Interpreter to refer to that part of your application which is responsible for
executing WIL programs.

The symbol (M)will be used to indicate a function or a section of the manual which applies only to menu-
based implementations of the WIL Interpreter. To get more information on an underlined item, just click on
it with your mouse. Keyboard users can use the Tab key to highlight the hot topic, and the Enter key to
display it.

Notational Conventions

Throughout this manual, we use the following conventions to distinguish elements of text:

ALL-CAPS

Used for filenames.

Boldface

Used for important points, programs, function names, and parts of syntax that must appear as
shown.

Acknowledgements

WIL software developed by Morrie Wilson.

Documentation written by Richard Merit.

Online Help organized and compiled by Jim Stiles who promotes the general use of Windows Online
Reference systems. Companies who need to make the best use of their computing resources use online
references as sales tools, customer support resources, and enduser support tools.

Voice: (206) 937-8419

E-Mail on Compuserve: 73240,3131

About Online Help

Linked References. Hypertext.

This help system includes most of the WIL manual. Most key terms are linked to examples and
definitions. This is one use of hypertext--computers used for rapid cross-linking of topics. You can click on
the highlighted and underlined text and get more information. Then you can quickly return to your original
topic.

Changing display colors of reference topics.

On many monitors, the help crosslinks are displayed in a green that can be difficult to read. You can
change the color.

To do this, you will need to edit your WIN.INI file: Add these lines:

[Windows Help]

Jumpcolor=0 0 255

Popupcolor=255 0 0

You can run the program SYSEDIT.EXE located in your Windows system directory to do this. The zeros in
the lines have spaces separating them from the other numbers there.

The above setting will give you blue hot jump keywords and red popup definitions in all your help
applications, not just WIL Online Reference.

Searching for topics.

The subject areas in WIL Online Reference are linked. If you want to view all the commands in one
subject area, network functions is one example, you first use the SEARCH function on the toolbar to look
for any single network function. Then, once that is on your display, use the BROWSE toolbar button to
view related commands.

Returning to previous topics.

The Back feature is convenient. With it, you can safely backtrack to your initial spot after a side trip.
Windows 3.1 lets you view a history of where you have been in WIL Online Reference. You get a list of
the topics you have found and can easily click on them to return to specific ones.

Making annotations for single or group use.

The WIL Online Reference has an annotation feature that is useful on an individual, or even a company-
wide basis. You can make specific comments or even add your own code samples to individual sections
in the WIL Online Reference. An icon of a paperclip appears in the upper left corner of topics that you
annotate. The annotations are kept in a file called WILHELP.ANN in the Windows directory. This file can
be copied between computers to exchange these annotations.

Using bookmarks to save time.

The WIL Online Reference also has a bookmark feature that works from its main menu. You will probably
find that you look some items up more frequently than others. You can set a bookmark by these and then
access the bookmark location from the Bookmark main menu item.

Copying Code Samples.

The examples in the function descriptions are good sources of useful command scripts. The Windows 3.1
version of WINHELP lets you use the Edit Copy function to select specific lines for copying to the
clipboard. In this way, you can copy the code without having to remove the surrounding descriptive text
that you don't need.

Most of the examples include cross references to commands. The formatting does not copy into your
scripts.

MENU FILES

Some applications (Command Post, File Commander) have the special capability of using WIL language
commands from their main menus. This section applies to them, only. If you are using a batch file-based
implementation of WIL (WinBatch and others), you can skip this section and move on to the WIL tutorial.

About Menu Files

This section of the manual shows how to create menu files with WIL. It is presented here so that you will
be able to follow along with the tutorial material which follows. It is not important at this point to
understand the actual commands which are shown in the menus. If you are curious, the colored and
underlined items are hot.

Hot items can be used to jump to the topics they represent. Either a double mouse click or a Tab Enter
keystroke sequence jumps to the topic. Clicking the Back button on the help toolbar lets you return easily.
Alt B is the keystroke for this. There is much more to WIL Online Reference. See Help for the particulars.

Menu File Structure

WIL menus are defined in standard ASCII text files (the kind created by Notepad). See your product
documentation for the name of the default menu file that it uses.

Every menu file contains one or more menu items which appear in drop-down menus. They may also
contain top-level menu names which show up in a main menu bar (refer to your product documentation
for more information).

Each menu item consists of a title which identifies the item, followed by one or more lines of menu code.
The WIL Interpreter will execute these when you choose the item.

Your application probably included a pre-defined sample menu, and you should refer to it as a practical
example of correct menu structure.

Here is an extremely simple menu file:

&Games
 &Solitaire

Run("sol.exe", "")

The first line, &Games, begins in column 1, and therefore defines a top-level menu item. Depending on
the product you are using, it may either appear on a menu bar or it may appear on the first-level drop-
down menu. The ampersand (&) is optional; it defines an Alt-key combination for the entry (Alt-G in this
example). It will appear in the menu as Games.

The second line, &Solitaire, begins in column 2, and defines the title for an individual menu item. Again,
the ampersand (&) is optional, and defines an Alt-key combination of Alt-S. This item will appear in the
menu as Solitaire.

The third line, Run("sol.exe", ""), is the actual code which will be executed when this menu item is
selected. Like all menu code, it must be indented at least four spaces (i.e., it must begin in column 5 or
higher).

To see more about the RUN function, just double click on it. Use the BACK toolbar button to return here.

This third line is really the entire WIL program; the two lines above it are simply titles which define the

position of the program (i.e., the menu item) in the overall menu structure.

Here's a slightly expanded version of the program:

&Games
 &Solitaire

Display(1, "Game Time", "About to play Solitaire")
Run("sol.exe", "")

We've simply added a line of code, changing this into a two-line program. Notice that each additional line
of code is still indented the same four spaces.

Now, let's look at a menu file which contains two menu items:

&Games
 &Solitaire

Run("sol.exe", "")
 &Minesweeper

Run("winmine.exe", "")

We've added a new menu item, Minesweeper, which begins in column 2 (like Solitaire) and will appear
under the top-level menu item Games (like Solitaire).

To add a new top-level menu item, just create a new entry beginning in column 1:

&Games
 &Solitaire

Run("sol.exe", "")
 &Minesweeper

Run("winmine.exe", "")

&Applications
 &Notepad

Run("notepad.exe", "")
 &WinEdit

Run("winedit.exe", "")

Now there are two top-level menu titles, Games and Applications, each of which contains two individual
items (the blank line between Games and Applications is not necessary, but is there just for readability).

In addition to top-level menus, you can optionally define one or two levels of submenus. The titles for
the first-level and second-level submenus must begin in columns 2, and 3, respectively, and the individual
menu items they contain must be indented one additional column.

For example:

&Applications
 &Editors
 &Notepad

Run("notepad.exe", "")
 &WinEdit

Run("winedit.exe", "")

 &Excel
Run("excel.exe", "")

In the above example, Editors is a submenu (which begins in column 2), which contains two menu items
(which begin in column 3). Excel also begins in column 2, but since it does not have any submenus
defined below it, it is a bottom-level (i.e., individual) menu item.

Here's an even more complex example:

&Applications
 &Editors
 &Notepad

Run("notepad.exe", "")
 &WinEdit

Run("winedit.exe", "")

 |&Spreadsheets
 &Windows-based
 &Excel

Run("excel.exe", "")

 _&DOS-based
 &Quattro

Run("q.exe", "")

We've added an additional level of submenus under Spreadsheets, so that the bottom-level menu items
(Excel and Quattro) now begin in column 4. There are also two special symbols presented in this menu:
the underscore (_), which causes a horizontal separator line to be drawn above the associated menu title,
and the vertical bar (|), which causes the associated menu title to appear in a new column.

It is possible to place an individual (bottom-level) menu item in column 1:

&Notepad
Run("notepad.exe", "")

in which case it will appear on the top-level menu, but will be executed immediately upon being selected
(i.e., there will be no drop-down menu).

Modifying Menus

As stated above, menu files must be created and edited with an editor, such as Notepad, that is capable
of saving files in pure ASCII text format.

After you have edited your menu, it must be reloaded into memory for the changes to take effect. You
may be able to do this manually, via the application's control menu (see your product documentation for
information). Or, you can have a menu item use the Reload function. Otherwise, the menus will be
reloaded automatically the next time you execute any menu item. However, if the menus are reloaded
automatically, the WIL Interpreter will not be able to determine which menu item you had just selected,
and it will therefore display a message telling you that you need to re-select it.

Menu Hotkeys

In addition to the standard methods for executing a menu item (double-clicking on it, highlighting it and
pressing Enter, or using Alt + the underlined letter), you may be able to define optional hotkeys for your
menu items (depending on the implementation of WIL in the product you are using), which will cause an
item to be executed immediately upon pressing the designated hot key.

Hotkeys are defined by following the menu item with a backslash (\) and then the hotkey:

&Accessories
 &Notepad \ (F2)

Run("notepad.exe", "")
 &Calculator \ ^C

Run("calc.exe", "")

In the above example, the F2 key is defined as the hotkey for Notepad, and Ctrl-C is defined as the
hotkey for Calculator.

Most single keys and key combinations may be used as hotkeys, except for the F10 key, and except for
Alt and Alt-Shift key combinations (although you may use AltCtrl key combinations). Refer to the
SendKey function for a list of special keycodes which may also be used as hot keys.

If you always access a menu item by using its hotkey, you may not need or want the menu item to appear
in the pull-down menus. If so, you can make it a non-displayed menu item by placing a @ symbol in
front of the title. For example:

&Accessories
 @Notepad \ (F2)

Run("notepad.exe", "")

In this case, Notepad would not appear in the pull-down menus, but could still be accessed by using the
F2 hotkey.

Note: Hotkeys and non-displayed menu items may not work in all implementations of the WIL
Interpreter.

WIL TUTORIAL

WIL Basics

What is a WIL Program?

A WIL program, like a DOS batch file, is simply a list of commands for the computer to process. Any task
which will be run more than once, or which requires entering multiple commands or even a single
complex command, is a good candidate for automation as a WIL program. For example, suppose you
regularly enter the following commands to start Windows:

First:

cd\windows

then:

win

and then:

cd\

Here, you are changing to the Windows directory, running Windows, and then returning to the root
directory. Instead of having to type these three commands every time you run Windows, you can create
a DOS batch file, called WI.BAT, which contains those exact same commands:

cd\windows
win
cd\

Now, to start Windows, you merely need to type the single command WI, which runs the WI.BAT batch
file, which executes your three commands.

WIL programs work basically the same way.

Our First WIL Program

Our first WIL program will simply run a favourite Windows application: Solitaire. If you are using a menu
script-based implementation of the WIL Interpreter, refer to the preceding section on Menu Files for
instructions on how to create and edit WIL menu items. If you are using a batch file-based
implementation of the WIL Interpreter, you will be creating your batch files using an editor, such as
Notepad, that is capable of saving text in pure ASCII format. In either case, let's create a WIL program
containing the following line of text:

Run("sol.exe", "")

Save the program, and run it (refer to your product documentation for information on how to execute a
WIL program). Presto! It's Solitaire.

Functions and Parameters

Now, let's look more closely at the line we entered:

Run("sol.exe", "")

The first part, Run, is a WIL function. As you might have guessed, its purpose is to run a Windows
program. There are a large number of functions and commands in WIL, and each has a certain syntax
which must be used. The correct syntax for all WIL functions may be found in the WIL Function
Reference (pg. 63). The entry for Run starts off as follows:

Syntax:

Run (program-name, parameters)

Parameters:

(s) program-name = the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

(s) parameters = optional parameters as required by the application.

Like all WIL functions, Run is followed by a number of parameters, enclosed in parentheses.
Parameters are simply additional pieces of information which are provided when a particular function is
used; they may be either required or optional. Optional parameters are indicated by being enclosed in
square brackets. In this case, Run has two required parameters: the name of the program to run, and
the parameters to be passed to the program.

WIL functions use several types of parameters. Multiple parameters are separated by commas. In the
example

Run("sol.exe", "")

"sol.exe" and "" are both string constants. String constants can be identified by the quote marks
which delimit (surround) them. You may use either double ("), single forward (') or single back (`) quote
marks as string delimiters; the examples in this manual will use double quotes.

Note: In our shorthand method for indicating syntax the (s) in front of a parameter indicates that it is a
string parameter.

You may have noticed how we said earlier that the two parameters for the Run function are required, and
yet the entry for Run in the WIL Function Reference describes the second parameter – "parameters"
– as being optional. Which is correct? Well, from a language standpoint, the second parameter is
required. That is, if you omit it, you will get a syntax error, and your WIL program will not run properly.
However, the program that you are running may not need any parameters. Solitaire, for example, does
not take any parameters. The way we handle this in our programs is to specify a null string – two
quote marks with nothing in between – as the second parameter, as we have done in our example
above.

To illustrate this further, let's create a WIL program containing the following line:

Run("notepad.exe", "")

This is just like our previous file, with only the name of the program having been changed. Save the file,
and run it. You should now be in Notepad. Now, edit the WIL program as follows:

Run("notepad.exe", "c:\autoexec.bat")

Save the program, exit Notepad, and run the WIL program again. You should now be in Notepad, with
AUTOEXEC.BAT loaded. As we've just demonstrated, Notepad is an example of a program which can
be run with or without a file name parameter passed to it by WIL.

It can often be helpful to add descriptive text to your WIL programs:

; This is an example of the Run function in WIL
Run("notepad.exe", "c:\autoexec.bat")

The semicolon at the beginning of the first line signifies a comment, and causes that line to be ignored.
You can place comment lines, and/or blank lines anywhere in your WIL programs. In addition, you can
place a comment on the same line as a WIL statement by preceding the comment with a semicolon. For
example:

Run("sol.exe", "") ; this is a very useful function

Everything to the right of a semicolon is ignored. However, if a semicolon appears in a string delimited
by quotes, it is treated as part of the string.

Displaying Text

Now, let's modify our original WIL program as follows:

; solitare.program
Display(5, "Good Luck!", "Remember... it's only a game.")
Run("sol.exe", "")

And run it. Notice the message box which pops up on the screen with words of encouragement:

That's done by the Display function in the second line above. Here's the reference for Display:

Syntax:

Display (seconds, title, text)

Parameters:

(i) seconds = seconds to display the message (1-3600).

(s) title = Title of the window to be displayed.

(s) text = Text of the window to be displayed.

Note that the Display function has three parameters. The first parameter – in our example, 5 – is the
number of seconds which the display box will remain on the screen (you can make the box disappear
before then by pressing any key or mouse button). This is a numeric constant, and – unlike string
constants – it does not need to be enclosed in quotes (although it can be, if you wish, as WIL will
automatically try to convert string variables to numeric variables when necessary, and vice versa). The
second parameter is the title of the message box, and the third parameter is the actual text displayed in
the box.

Note: In our shorthand method for indicating syntax the (i) in front of a parameter indicates that it is a
string parameter.

Now, exit Solitaire (if you haven't done so already), and edit the WIL program by placing a semicolon at
the beginning of the line with the Run function. This is a handy way to disable, or "comment out," lines in
your WIL programs when you want to modify and test only certain segments. Your WIL program should
look like this:

; solitare.program
Display(5, "Good Luck!", "Remember... it's only a game.")
; Run("sol.exe", "")

Now, experiment with modifying the parameters in the Display function. Try adjusting the value of the
first parameter. If you look up Display in the WIL reference section, you will see that the acceptable
values for this parameter are 13600. If you use a value outside this range, WIL will adjust it to "make it

fit"; that is, it will treat numbers less than 1 as if they were 1, and numbers greater than 3600 as 3600.
Also, try using a non-integer value, such as 2.5, and see what happens (you should receive an error
message). Play around with the text in the two string parameters; try making one, or both, null strings
("").

Getting Input

Now, let's look at ways of getting input from a user and making decisions based on that input. The most
basic form of input is a simple Yes/No response, and, indeed, there is a WIL function called AskYesNo:

Syntax:

AskYesNo (title, question)

Parameters

(s) title = title of the question box.

(s) question = question to be put to the user.

Returns:

(i) @YES or @NO, depending on the button pressed.

You should be familiar with the standard syntax format by now; it shows us that AskYesNo has two
required parameters. The Parameters section tells us that these parameters both take strings, and tells
us what each of the parameters means.

You will notice that there is also a new section here, called Returns. This section shows you the
possible values that may be returned by this function. All functions return values. We weren't
concerned with the values returned by the Run and Display functions. But with AskYesNo, the returned
value is very important, because we will need that information to decide how to proceed. We see that
AskYesNo returns an integer value. An integer is a whole (non-fractional) number, such as 0, 1, or 2
(the number 1.5 is not an integer).

We also see that the integer value returned by AskYesNo is either @YES or @NO. @YES and @NO
are predefined constants in WIL. All predefined constants begin with an @ symbol, and we will
distinguish them further by typing them in all caps. You will find a list of all predefined constants in
Appendix A (pg. 210).

Even though the words Yes and No are strings, it is important to remember that the predefined constants
@YES and @NO are not string variables. (Actually, @YES is equal to 1, and @NO is equal to 0. Don't
worry if this is confusing; you really don't need to remember or even understand it.)

Now, let's modify our WIL program as follows:

AskYesNo("Really?", "Play Solitaire now?")
Run("sol.exe", "")

and run it. You should have gotten a nice dialog box which asked if you wanted to play Solitaire:

but no matter what you answered, it started Solitaire anyway. This is not very useful. We need a way to
use the Yes/No response to determine further processing. First, we need to explore the concept and use
of variables.

Using Variables

A variable is simply a placeholder for a value. The value that the variable stands for can be either a text
string (string variable) or a number (numeric variable).

You may remember from Algebra 101 that if X=3, then X+X=6. X is simply a numeric variable, which
stands here for the number 3. If we change the value of X to 4 (X=4), then the expression X+X is now
equal to 8.

Okay. We know that the AskYesNo function returns a value of either @YES or @NO. What we need to
do is create a variable to store the value that AskYesNo returns, so that we can use it later on in our WIL
program.

First, we need to give this variable a name. In WIL, variable names must begin with a letter, may contain
any combination of letters or numbers, and may be from 1 to 30 characters long. So, let's use a variable
called response. (We will distinguish variable names in this text by printing them in all lowercase letters;
we will print function and command names starting with a capital letter.

However, in WIL, the case is not significant, so you can use all lowercase, or all uppercase, or whatever
combination you prefer.) We assign the value returned by AskYesNo to the variable response, as
follows:

response = AskYesNo("Really?", "Play Solitaire now?")

Notice the syntax. The way that WIL processes this line is to first evaluate the result of the AskYesNo
function. The function returns a value of either @YES or @NO. Then, WIL assigns this returned value
to response. Therefore, response is now equal to either @YES or @NO, depending on what the user
enters.

Now, we need a way to make a decision based upon this variable.

Making Decisions

WIL provides a way to conditionally execute a statement, and that is by using the If... Then command.
Actually, there are two separate parts to this construct: If and Then. The format is:

If condition Then statement

(We refer to If... Then as a command, rather than a function, because functions are followed by
parameters in parentheses, while commands are not. Commands are used for system control.)

The use of If... Then can easily be illustrated by going back to our WIL program and making these
modifications:

response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES Then Run("sol.exe", "")

In this example, we are using If... Then to test whether the value of the variable response is @YES. If it
is @YES, we start Solitaire. If it isn't @YES, we don't.

The rule is: if the condition following the If keyword is true, then the statement following the Then keyword
is performed. If the condition following the If keyword is false, then anything following the Then keyword
is ignored.

There is something extremely important that you should note about the syntax of the If... Then command:
the double equal signs (==). In WIL, a single equal sign (=) is an assignment operator – it assigns
the value on the right of the equal sign to the variable on the left of the equal sign. As in:

response = AskYesNo("Really?", "Play Solitaire now?")

This is saying, in English: "Assign the value returned by the AskYesNo function to the variable named
response." But in the statement:

If response == @YES Then Run("sol.exe", "")

we do not want to assign a new value to response, we merely want to test whether it is equal to @YES.
Therefore, we use the double equal signs (==), which is the equality operator in WIL. The statement
above is saying, in English: "If the value of the variable named response is equal to @YES, then run the
program SOL.EXE." If you used a single equal sign (=) here by mistake, you would get an error
message:

Which is WIL's way of telling you to re-check your syntax.

If you've become confused, just remember that a single equal sign (=) is an assignment operator, used to
assign a value to a variable. Double equal signs (==) are an equality operator, used to test whether the
values on both sides of the operator are the same.

If you have a problem with one of your WIL programs, make sure to check whether you've used one of
these symbols incorrectly. It's a very common mistake, which is why we emphasize it so strongly!

We've seen what happens when the condition following the Then keyword is true. But what happens
when it is false? Remember we said that when the If condition is false, the Then statement is ignored.

There will be times, however when we want to perform an alternate action in this circumstance. For
example, suppose we want to display a message if the user decides that he or she doesn't want to play
Solitaire. We could write:

response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES Then Run("sol.exe", "")
If response == @NO Then Display(5, "", "Game canceled")

In this case there are two If statements being evaluated, with one and only one of them possibly being
true. However, this is inefficient from a processing standpoint. Furthermore, what would happen if you
had several functions you wanted to perform if the user answered Yes? You would end up with
something unwieldy:

response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES Then Display(5, "", "On your mark...")
If response == @YES Then Display(5, "", "Get set...")
If response == @YES Then Display(5, "", "Go!")
If response == @YES Then Run("sol.exe", "")

Clearly, there must be a better way of handling this.

Branching

Enter the Goto command. Goto, in combination with If ... Then, gives you the ability to redirect the flow
of control in your WIL programs. Goto does exactly what it says – it causes the flow of control to go
to another point in the WIL program.

You must specify where you want the flow of control to be transferred, and you must mark this point with a
label. A label is simply a destination address, or marker. The form of the Goto command is:

Goto label

where label is an identifier that you specify. The same rules apply to label names as to variable names
(the first character must be a letter, the label name may consist of any combination of letters and
numbers, and the label name may be from 1 to 30 characters long).

In addition, the label is preceded by a colon (:) at the point where it is being used as a destination
address. Here's an example:

response = AskYesNo("Really?", "Play Solitaire now?")
If response == @NO Then Goto quit
Display(5, "", "On your mark...")
Display(5, "", "Get set...")
Display(5, "", "Go!")
Run("sol.exe", "")
:quit

If the If condition is true (that is, if the user answers No), then the Goto statement is performed. The
Goto statement is saying, in English "go to the line marked :quit, and continue processing from there."

Notice how the label quit is preceded by a colon on the last line, but not on the line where it follows the
Goto keyword. This is important. Although you can have multiple lines in your WIL program which say
Goto quit, you can have only one line marked :quit (just like you can have several people going to your
house, but can have only one house with a particular address).

Of course, you can use many different labels in a WIL program, just as you can use many different
variables, as long as each has a unique name. For example:

response = AskYesNo("Really?", "Play Solitaire now?")
If response == @NO Then Goto quit
Display(5, "", "On your mark...")
Display(5, "", "Get set...")
Display(5, "", "Go!")
Run("sol.exe", "")
Goto done
:quit
Display(5, "", "Game canceled")
:done

This is a little more complicated. It uses two labels, quit and done. If the user answers No, then the If
condition is true, control passes to the line marked :quit, and a message is displayed.

If, on the other hand, the user answers Yes, then the If condition is false, and the Goto quit line is
ignored. Instead, the next four lines are processed, and then the Goto done statement is performed.

The purpose of this line is to bypass the Display line which follows, by transferring control to the end of

the WIL program.

There is another way to keep the processing from "falling through" to unwanted lines at the end of a
program, and that is with the Exit command. Exit causes a WIL program to end immediately. So, for
example, we could rewrite the above WIL program as follows:

response = AskYesNo("Really?", "Play Solitaire now?")
If response == @NO Then Goto quit
Display(5, "", "On your mark...")
Display(5, "", "Get set...")
Display(5, "", "Go!")
Run("sol.exe", "")
Exit
:quit
Display(5, "", "Game canceled")

Since the Run function is the last thing we want to do if the user answers Yes, the Exit command simply
ends the program at that point. Note that we could put an Exit command at the end of the program as
well, but it isn't necessary. An Exit is implied at the end of a WIL program.

This concludes the first part of our tutorial. You now have the building blocks you need to create useful
WIL programs. In the second part, which follows, we will look in more detail at some of the WIL functions
which are available for your use.

Exploring WIL

What follows is just a sample of the many functions and commands available in WIL. These should be
sufficient to begin creating versatile and powerful WIL programs.

Running Programs

There are three functions which you can use to start an application, each of which shares a common
syntax:

Run (program-name, parameters)

We've already seen the Run function. This function starts a program in a "normal" window. Windows,
or the application itself, decides where to place the application's window on the screen.

Example:

Run("notepad.exe", "myfile.txt")

If the program has an EXE extension, its extension may be omitted:

Run("notepad", "myfile.txt")

Also, you can "run" data files if they have an extension in WIN.INI which is associated with an executable
program. So, if TXT files are associated with Notepad:

Run("myfile.txt", "")

would start Notepad, using the file MYFILE.TXT.

When you specify a file to run, WIL looks first in the current directory, and then in the directories on your
DOS path. If the file is not found, WIL will return an error. You can also specify a full path name for WIL
to use, as in:

Run("c:\windows\apps\winedit.exe", "")

RunZoom (program-name, parameters)

RunZoom is like Run, but starts a program as a full-screen window.

Example:

RunZoom("excel", "bigsheet.xls")

RunIcon (program-name, parameters)

RunIcon starts a program as an icon at the bottom of the screen.

Example:

RunIcon("clock", "")

Display and Input

Here we have functions which display information to the user and prompt the user for information, plus a
couple of relevant system functions.

Display (seconds, title, text)

Displays a message to the user for a specified period of time. The message will disappear after the time
expires, or after any keypress or mouse click.

Example:

Display(2, "", "Loading Solitaire now")

Message (title, text)

This command displays a message box with a title and text you specify, which will remain on the screen
until the user presses the OK button.

Example:

Message("Sorry", "That file cannot be found")

Pause (title, text)

This command is similar to Message, except an exclamation-point icon appears in the message box, and
the user can press OK or Cancel. If the user presses Cancel, the WIL program ends (or goes to the
label :cancel, if one is defined).

Example:

Pause("Delete Backups", "Last chance to stop!")
; if we got this far, the user pressed OK
FileDelete("*.bak")

AskYesNo (title, question)

Displays a dialog box with a given title, which presents the user with three buttons: Yes, No, and Cancel.
If the user presses Cancel, the WIL program ends (or goes to the label :cancel, if one is defined).
Otherwise, the function returns a value of @YES or @NO.

Example:

response = AskYesNo("End Session", "Really quit Windows?")

AskLine (title, prompt, default)

Displays a dialog box with a given title, which prompts the user for a line of input. Returns the default if
the user just presses the OK button.

Example:

yourfile = AskLine("Edit File", "Filename:", "newfile.txt")
Run("notepad", yourfile)

If you specify a default value (as we have with NEWFILE.TXT), it will appear in the response box, and
will be replaced with whatever the user types. If the user doesn't type anything, the default is used.

Beep

Beeps once.

Beep

And if one beep isn't enough for you:

Beep
Beep
Beep

Delay(seconds)

Pauses WIL program execution.

The Delay function lets you suspend processing for a fixed period of time, which can be anywhere from 1
to 3600 seconds.

Manipulating Windows

There are a large number of functions which allow you to manage the windows on your desktop. Here
are some of them:

WinZoom (partial-windowname)

Maximizes an application window to full-screen.

WinIconize (partial-windowname)

Turns an application window into an icon.

WinShow (partial-windowname)

Shows a window in its "normal" state.

These three functions are used to modify the size of an already-running window. WinZoom is the
equivalent of selecting Maximize from a window's control menu, WinIconize is like selecting Minimize,
and WinShow is like selecting Restore.

The window on which you are performing any of these functions does not have to be the active window.
If the specified window is in the background, and a WinZoom or WinShow function causes the size of
the window to change, then the window will be brought to the foreground. The WinZoom function has
no effect on a window which is already maximized; likewise, WinShow has no effect on a window which
is already "normal."

Each of these functions accepts a partial windowname as a parameter. The windowname is the name
which appears in the title bar at the top of the window. You can specify the full name if you wish, but it
may often be advantageous not to have to do so. For example, if you are editing the file
SOLITARE.WBT in a Notepad window, the windowname will be Notepad - SOLITARE.WBT:

You probably don't want to have to hard-code this entire name into your WIL program as:

WinZoom("Notepad - SOLITARE.WBT")

Instead, you can specify the partial windowname "Notepad":

WinZoom("Notepad")

If you have more than one Notepad window open, WIL will use the one which was most recently used or
started.

Note that WIL matches the partial windowname beginning with the first character, so that while

WinZoom("Note")

would be correct,

WinZoom("pad")

would not result in a match.

Also, the case (upper or lower) of the title is significant, so

WinZoom("notepad")

would not work either.

WinActivate (partial-windowname)

Makes an application window the active window.

This function makes a currently-open window the active window. If the specified window is an icon, it will
be restored to normal size; otherwise, its size will not be changed.

WinClose (partial-windowname)

Closes an application window.

This is like selecting Close from an application's control menu. You will still receive any closing
message(s) that the application would normally give you, such as an "unsaved-file" dialog box.

WinCloseNot (partial-windowname
[, partial-windowname]...)

Closes all application windows except those specified.

This function lets you close all windows except the one(s) you want to remain open. For example:

WinCloseNot("Program Man")

would leave only the Program Manager open, and:

WinCloseNot("Program Man", "Solit")

would leave the Program Manager and Solitaire windows open.

WinWaitClose (partial-windowname)

Waits until an application window is closed.

This function causes your WIL program to pause until you have manually closed a specified window.
This is a convenient way to get WIL to open several windows sequentially, thereby not having
unnecessary windows all over your desktop. For example:

RunZoom("invoices.xls", "") ;balance the books
WinWaitClose("Microsoft Ex") ;wait till Excel closed
RunZoom("sol", "") ;you deserve a break
WinWaitClose("Solitaire") ;wait until Solit closed

Run("winword", "agenda.doc") ;more paperwork
WinWaitClose("Microsoft Wor") ;wait until W4W closed
Run("clock","") ;lunchtime yet?

WinExist (partial-windowname)

Tells if a window exists.

This function returns @TRUE or @FALSE, depending on whether a matching window can be found.
This provides a way of insuring that only one copy of a given window will be open at a time.

If you've been following this tutorial faithfully from the beginning, you probably have several copies of
Solitaire running at the moment. (You can check by pressing Ctrl-Esc and bringing up the Task
Manager. You say you've got five Solitaire windows open? Okay, close them all.) Now, let's modify our
WIL program. First, trim out the excess lines so that it looks like this:

Run("sol.exe", "")

Now, let's use the WinExist function to make sure that the WIL program only starts Solitaire if it isn't
already running:

If WinExist("Solitaire") == @FALSE Then Run("sol.exe", "")

And this should work fine. Run the WIL program twice now, and see what happens. The first time you
run it, it should start Solitaire; the second (and subsequent) time, it should not do anything.

However, it's quite likely that you want the WIL program to do something if Solitaire is already running –
namely, bring the Solitaire window to the foreground. This can be accomplished by using the
WinActivate function, along with a couple of Goto statements:

If WinExist("Solitaire") == @FALSE Then Goto open
WinActivate("Solitaire")
Goto loaded
:open
Run("sol.exe", "")
:loaded

Note that we can change this to have WinExist check for a True value instead, by modifying the structure
of the WIL program:

If WinExist("Solitaire") == @TRUE Then Goto activate
Run("sol.exe", "")
Goto loaded
:activate
WinActivate("Solitaire")
:loaded

Either format is perfectly correct, and the choice of which to use is merely a matter of personal style. The
result is exactly the same.

EndSession()

Ends the current Windows session.

This does exactly what it says. It will not ask any questions (although you will receive any closing

messages that your currently-open windows would normally display), so you may want to build in a little
safety net:

sure = AskYesNo("End Session", "Really quit Windows?")
If sure == @YES Then EndSession()

EndSession is an example of a WIL function which does not take any parameters, as indicated by the
empty parentheses which follow it. The parentheses are still required, though.

Files and Directories

DirChange (pathname)

Changes the directory to the pathname specified.

Use this function when you want to run a program which must be started from its own directory.
"Pathname" may optionally include a drive letter.

Example:

DirChange("c:\windows\winword")
Run("winword.exe", "")

DirGet ()

Gets the current working directory.

This function is especially useful in conjunction with DirChange, to save and then return to the current
directory.

Example:

origdir = DirGet()
DirChange("c:\windows\winword")
Run("winword.exe", "")
DirChange(origdir)

FileExist (filename)

Determines if a file exists.

This function will return @TRUE if the specified file exists, and @FALSE if it doesn't exist.

Example:

If FileExist("win.bak") == @FALSE Then FileCopy("win.ini", "win.bak", @FALSE)
Run("notepad.exe", "win.ini")

FileCopy (from-list, to-file, warning)

Copies files.

If warning is @TRUE, WIL will pop up a dialog box warning you if you are about to overwrite an existing
file, and giving you an opportunity to change your mind. If warning is @FALSE, it will overwrite existing
files with no warning.

Example:

FileCopy("win.ini", "*.sav", @TRUE)
Run("notepad.exe", "win.ini")

The asterisk (*) is a wildcard character, which matches any letter or group of letters in a file name. In
this case, it will cause WIN.INI to be copied as WIN.SAV.

FileDelete (file-list)

Deletes files.

Example:

If FileExist("win.bak") == @TRUE Then FileDelete("win.bak")

FileRename (from-list, to-file)

Renames files to another set of names.

We can illustrate the use of these WIL program functions with a typical WIL application. Let's suppose
that our word processor saves a backup copy of each document, with a BAK extension, but we want a
larger safety net when editing important files. We want to keep the five most recent versions of the
wonderful software manual we're writing. Here's a WIL program to accomplish this:

If FileExist("wil.bak") == @TRUE Then Goto backup
:edit
Run("winword.exe", "wil.doc")
Exit
:backup
FileDelete("wil.bk5")
FileRename("wil.bk4", "wil.bk5)
FileRename("wil.bk3", "wil.bk4)
FileRename("wil.bk2", "wil.bk3)
FileRename("wil.bk1", "wil.bk2)
FileRename("wil.bak", "wil.bk1)
Goto edit

If the file WIL.BAK exists, it means that we have made a change to WIL.DOC. So, before we start
editing, we delete the oldest backup copy, and perform several FileRename functions, until eventually
WIL.BAK becomes WIL.BK1. Notice how the flow of control moves to the line labeled :backup, and then
back to the line labeled :edit, and how we terminate processing with the Exit command.

If we did not include the Exit command, the WIL program would continue in an endless loop.

However, this still isn't quite right. What would happen if the file WIL.BK5 didn't exist? In the DOS batch
language, we would get an error message, and processing would continue. But in WIL, the error would
cause the WIL program to terminate:

There are two ways that we can handle this. We could use an If FileExist test before every file
operation, and test the returned value for a @TRUE before proceeding. But this is clumsy, even with
such a small WIL program, and would become unwieldy with a larger one.

Handling Errors

Luckily, there is a WIL system function to help us here: ErrorMode. The ErrorMode function lets you

decide what will happen if an error occurs during WIL processing. Here's the syntax:

ErrorMode (mode)

Specifies how to handle errors.

Parameters:

(i) mode = @CANCEL, @NOTIFY, or @OFF.

Returns:

(i) previous error setting.

Use this command to control the effects of runtime errors. The default is @CANCEL, meaning the
execution of the WIL program will be canceled for any error.

@CANCEL: All runtime errors will cause execution to be canceled. The user will be notified which error
occurred.

@NOTIFY: All runtime errors will be reported to the user, and they can choose to continue if it isn't fatal.

@OFF: Minor runtime errors will be suppressed. Moderate and fatal errors will be reported to the user.
User has the option of continuing if the error is not fatal.

As you can see, the default mode is @CANCEL, and it's a good idea to leave it like this. However, it is
quite reasonable to change the mode for sections of your WIL program where you anticipate errors
occurring. This is just what we've done in our modified WIL program:

If FileExist("wil.bak") == @TRUE Then Goto backup
:edit
Run("winword.exe", "wil.doc")
Exit
:backup
ErrorMode(@OFF)
FileDelete("wil.bk5")
FileRename("wil.bk4", "wil.bk5)
FileRename("wil.bk3", "wil.bk4)
FileRename("wil.bk2", "wil.bk3)
FileRename("wil.bk1", "wil.bk2)
FileRename("wil.bak", "wil.bk1)
ErrorMode(@CANCEL)
Goto edit

Notice how we've used ErrorMode(@OFF) to prevent errors in the section labeled backup: from aborting
the WIL program, and then used ErrorMode(@CANCEL) at the end of the that section to change back to
the default error mode. This is a good practice to follow.

Selecting from Lists

So far, whenever we have needed to use a file name, we've hard-coded it into our WIL programs. For
example:

Run("notepad.exe", "agenda.txt")

Naturally, there should be a way to get this information from the user "on the fly", so that we wouldn't have
to write hundreds of different WIL programs. And there is a way. Three or four ways, actually.
Consider, first, a function that we have already seen, AskLine:

file = AskLine("", "Enter Filename to edit?", "")
Run("notepad.exe", file)

This will prompt for a filename, and run Notepad on that file:

There are only three problems with this approach. First, the user might not remember the name of the
file. Second, the user might enter the name incorrectly. And finally, modern software is supposed to be
sophisticated and user-friendly enough to handle these things the right way. And WIL certainly can.

There are two new functions we need to use for an improved file selection routine: FileItemize and
ItemSelect.

FileItemize (file-list)

Returns a space-delimited list of files.

This function compiles a list of filenames and separates the names with spaces. There are several
variations we can use:

FileItemize("*.doc")

would give us a list of all files in the current directory with a DOC extension,

FileItemize("*.com *.exe")

would give us a list of all files in the current directory with a COM or EXE extension, and

FileItemize("*.*")

would give us a list of all files in the current directory.

Of course, we need to be able to use this list, and for that we have:

ItemSelect (title, list, delimiter)

Displays a listbox filled with items from a list you specify in a string. The items are separated in your
string by a delimiter character.

This is the function which actually displays the list box. Remember that FileItemize returns a file list
delimited by spaces, which would look something like this:

FILE1.DOC FILE2.DOC FILE3.DOC

When we use ItemSelect, we need to tell it that the delimiter is a space. We do this as follows:

textfiles = FileItemize("*.doc *.txt")
yourfile = ItemSelect("Select file to edit", textfiles, " ")
Run("notepad.exe", yourfile)

First, we use FileItemize to build a list of filenames with DOC and TXT extensions. We assign this list to
the variable textfiles. Then, we use the ItemSelect function to build a list box, passing it the variable
textfiles as its second parameter. The third parameter we use for ItemSelect is simply a space with
quote marks around it; this tells ItemSelect that the variable textfiles is delimited by spaces. (Note that
this is different from the null string that we've seen earlier – here, you must include a space between the
quote marks.) Finally, we assign the value returned by ItemSelect to the variable yourfile, and run
Notepad using that file.

In the list box, if the user presses Enter or clicks on the OK button without a file being highlighted,
ItemSelect returns a null string. If you want, you can test for this condition:

textfiles = FileItemize("*.doc *.txt")
:retry
yourfile = ItemSelect("Select file to edit", textfiles, " ")
If yourfile == "" Then Goto retry
Run("notepad.exe", yourfile)

DirItemize (dir-list)

Returns a space-delimited list of directories.

This function is similar to FileItemize, but instead of returning a list of files, it returns a list of directories.
Remember we said that FileItemize only lists files in the current directory. Often, we want to be able to
use files in other directories as well. We can do this by first letting the user select the appropriate
directory, using the DirItemize and ItemSelect combination:

DirChange("\")
subdirs = DirItemize("*")
targdir = ItemSelect("Select dir", subdirs, " ") DirChange(targdir)
files = FileItemize("*.*")
file = ItemSelect("Select file", files, " ")
Run("notepad.exe", file)

First we change to the root directory. Then we use DirItemize to get a list of all the subdirectories off of
the root directory. Next, we use ItemSelect to give us a list box of directories from which to select.
Finally, we change to the selected directory, and use FileItemize and ItemSelect to pick a file.

Although this WIL program works, it needs to be polished up a bit. What happens if the file we want is in
the \WINDOWS\BATCH directory? Our WIL program doesn't go more than one level deep from the root
directory. We want to continue down the directory tree, but we also need a way of telling when we're at
the end of a branch. As it happens, there is such a way: DirItemize will return a null string if there are no
directories to process. Given this knowledge, we can set up a loop to test when we are at the lowest
level:

DirChange("\")
:getdir
subdirs = DirItemize("*")
If subdirs == "" Then Goto getfile
targdir = ItemSelect("Select dir (OK = curr)", subdirs, " ")
If targdir == "" Then Goto getfile
DirChange(targdir)
Goto getdir
:getfile
files = FileItemize("*.*")
file = ItemSelect("Select file", files, " ")
If file == "" Then Goto getfile
Run("notepad.exe", file)

After we use the DirItemize function, we test the returned value for a null string. If we have a null string,
then we know that the current directory has no subdirectories, and so we proceed to select the filename
from the current directory (Goto getfile). If, however, DirItemize returns a non-blank list, then we know
that there is, in fact, at least one subdirectory. In that case, we use ItemSelect to present the user with a
list box of directories. Then, we test the value returned by ItemSelect. If the returned value is a null
string, it means that the user did not select a directory from the list, and presumably wants a file in the
current directory. We happily oblige (Goto getfile). On the other hand, a non-blank value returned by
ItemSelect indicates that the user has selected a subdirectory from the list box. In that case, we change
to the selected directory, and loop back to the beginning of the directory selection routine (Goto getdir).
We continue this process until either (a) the user selects a directory, or (b) there are no directories left to
select. Eventually, we get to the section labeled :getfile.

Nicer File Selection

An even more elegant way of selecting a file name is provided by the Dialog function, which also allows
the user to select various options via check boxes and radio buttons.

Nicer Messages

Have you tried displaying long messages, and found that WIL didn't wrap the lines quite the way you
wanted? Here are a couple of tricks.

Num2Char (integer)

Converts a number to its character equivalent.

We want to be able to insert a carriage return/line feed combination at the end of each line in our output,
and the Num2Char function will let us do that. A carriage return has an ASCII value of 13, and a line
feed has an ASCII value of 10 (don't worry if you don't understand what this sentence means). To be
able to use these values, we must convert them to characters, as follows:

cr = Num2Char(13)
lf = Num2Char(10)

Now, we need to be able to place the variables cr and lf in our message. For example, let's say we want
to do this:

Message("", "This is line one This is line two")

If we just inserted the variables into the string, as in:

cr = Num2Char(13)
lf = Num2Char(10)
Message("", "This is line one cr lf This is line two")

we would not get the desired effect. WIL would simply treat them as ordinary text:

However, WIL does provide us with a method of performing variable substitution such as this, and that is
by delimiting the variables with percentage signs (%). If we do this:

cr = Num2Char(13)
lf = Num2Char(10)
Message("", "This is line one %cr% %lf%This is line two")

we will get what we want:

Note that there is no space after %lf%; this is so that the second line will be aligned with the first line
(every space within the delimiting quote marks of a string variable is significant).

Now, wouldn't it be convenient if we could combine cr and lf into a single variable? We can.

StrCat (string[, string]...)

Concatenates strings together.

The StrCat function lets us combine any number of string constants and/or string variables. Here's how
we combine the variables cr and lf into the single variable crlf:

crlf = StrCat(cr, lf)

Note that the strings to be concatenated are separated by commas, within the parentheses. Now, we
can rewrite our example, as follows:

cr = Num2Char(13)
lf = Num2Char(10)
crlf = StrCat(cr, lf)
Message("", "This is line one %crlf%This is line two")

If we wanted to re-use this message a number of times, it would be quite convenient to use the StrCat
function to make a single variable out of it:

cr = Num2Char(13)
lf = Num2Char(10)
crlf = StrCat(cr, lf)
line1 = "This is line one"
line2 = "This is line two"
mytext = StrCat(line1, crlf, line2)
Message("", mytext)

Running DOS Programs

WIL can run DOS programs, just like it runs Windows programs:

DirChange("c:\game")
Run("scramble.exe", "")

If you want to use an internal DOS command, such as DIR or TYPE, you can do so by running the DOS
command interpreter, COMMAND.COM, with the /c program parameter, as follows:

Run("command.com", "/c type readme.txt")

Everything that you would normally type on the DOS command line goes after the /c in the second
parameter. Here's another example:

Run("command.com", "/c type readme.txt | more")

These examples assume that COMMAND.COM is in a directory on your DOS path. If it isn't, you could
specify a full path name for it:

Run("c:\command.com", "/c type readme.txt | more")

Or, better still, you could use the WIL Environment function.

Environment (env-variable)

Gets a DOS environment variable.

Since DOS always stores the full path and filename of the command processor in the DOS environment
variable COMSPEC, it is an easy matter to retrieve this information:

coms = Environment("COMSPEC")

and use it in our WIL program:

coms = Environment("COMSPEC")
Run(coms, "/c type readme.txt")

To get a DOS window, just run COMMAND.COM with no parameters:

coms = Environment("COMSPEC")
Run(coms, "")

Sending Keystrokes to Programs

Here we come to one of the most useful and powerful features of WIL: the ability to send keystrokes to
Windows programs, just as if you were typing them directly from the keyboard.

SendKey(character-codes)

Sends keystrokes to the active application.

This is an ideal way to make the computer automatically type the keystrokes that you enter every time
you start a certain program. For example, to start up Notepad and have it prompt you for a file to open,
you would use:

Run("notepad.exe", "")
SendKey("!fo")

The parameter you specify for SendKey is the string that you want sent to the program. This string
consists of standard characters, as well as some special characters which you will find listed under the
entry for SendKey in the WIL Function Reference. In the example above, the exclamation mark (!)
stands for the Alt key, so !f is the equivalent of pressing and holding down the Alt key while
simultaneously pressing the F key. The o in the example above is simply the letter O, and is the same as
pressing the O key by itself:

Here's another example:

RunZoom("sol.exe", "")
SendKey("!gc(RIGHT)(SP)~")

This starts up Solitaire, brings up the Game menu (!g), and selects Deck (c) from that menu:

Then it moves the cursor to the next card back style on the right ((RIGHT)), selects that card back ((SP)),
and then selects OK (~).

And voilà! A different card design every time you play!

Our Completed WIL File

Here is the final working version of the WIL program that we've slowly been building throughout this
tutorial:

; solitare.wbt
mins = AskLine("Solitaire", "How many mins do you want to play?", "")
If WinExist("Solitaire") == @TRUE Then Goto activate
RunZoom("sol.exe", "")
Goto loaded
:activate
WinActivate("Solitaire")
WinZoom("Solitaire")
:loaded
SendKey("!gc(RIGHT)(SP)~")
goal = mins * 60
timer = 0
:moretime
remain = goal - timer
WinTitle("Solitaire", "Solitaire (%remain% seconds left)")
Delay(10)
timer = timer + 10
If WinExist("Solitaire") == @FALSE Then Exit
If timer < goal Then Goto moretime
Beep
WinClose("Solitaire")
Message("Time's up", "Get back to work!")

It incorporates many of the concepts that we've discussed so far, as well as using some arithmetic (*, -, +)
and relational (<) operators that are covered in the section on the WIL Language (pg. 41).

It can also be improved and customized in a number of ways, but we'll leave that up to you.

If you can understand and follow the structures and processes illustrated in this sample file, and can
begin to incorporate them into your own WIL programs, you are well on your way to becoming a true WIL
guru!

Advanced Techniques
This section covers some miscellaneous items, of a more advanced nature.

Recovering from Cancel

If the user presses the Cancel button (in any dialog which has one), the label :CANCEL will be searched
for in the WIL program, and, if found, control will be transferred there. If no label :CANCEL is found,
processing simply stops.

This allows the program developer to perform various bits of cleanup processing after a user presses
Cancel.

Aborting WIL Processing

A currently-executing WIL program can be terminated immediately by pressing the <CtrlShiftBreak> key
combination.

Default Program for Unknown Extension

The Run function (and related members of the Run... family of functions) allow you to run a data file if it is
associated with a program via the [Extensions] section of the WIN.INI file. You can also (optionally)
create a special default program entry in that section, as follows:

*=program.exe

where an asterisk is used instead of a file extension. Then, if you try to run a data file whose extension is
not specified in [Extensions], WIL will run "program.exe." Even though the customary ^.ext is not
included in the example line above, WIL will pass the name of the data file as a command-line parameter
to "program.exe."

Note: WIL does not use the Windows registration database to match data files with their associated
programs.

Partial window names

Those WIL functions which take a partial windowname as a parameter can be directed to accept only an
exact match, by ending the window name with a tilde (~). For example, WinShow("Note~") would only
match a window whose title was "Note"; it would not match "Notepad".

Sounds

If you have Windows Multimedia extensions, and hardware capable of playing WAV waveform files, there
will be sounds audible at various points in the execution of WIL programs. By default, these sounds are
enabled. If you want sounds to be off by default, enter the line:

Sounds=Off

in the [Main] section of the WWWBATCH.INI file.

You can also use the Sounds function to turn sounds on and off from within a WIL program.

If you add to the [Sounds] section of your WIN.INI file a line such as:

StartProgram=CHIMES.WAV,Program Launch

then the WIL Interpreter will make sounds whenever a new program is launched.

Programming Reference

The WIL language consists of commands for controlling the Windows interface and the programs that run
within it.

These commands are written as scripts into a plain text file. When this file is run by a user, each line is
then executed.

Automating Windows tasks with WIL gives you a script that is easily edited when you need changes. It is
also a common denominator language that works the same for all Windows applications.

Programming Style in WIL

WIL supports, but does not enforce, structured programming. Small scripts of 20 lines or less probably do
not benefit from a structured approach. Longer scripts can be written in structured style with an opening
section for declaring variable and constant values. Liberal use of comments (anything beginning with a
semicolon is a comment in WIL) can make your scripts clear.

WIL includes the capability of using sequential IFTHEN Else conditional instructions. Nesting of
conditional statements is done with Goto statements and labels. While the use of Goto statements goes
against structured programming dogma, the scripts produced in WIL are generally short and easily
documented.

Scope of variables in WIL is handled by the Drop function. If you drop it, it's gone. If you don't, it sticks
around as long as the WIL application runs.

In the case of batch language applications, the variables will vanish when the batch file finishes running.
In the case of menuing applications that use WIL, the variables keep their values until they are defined
again or they are dropped.

Language Components

WIL statements are constructed from constants, variables, operators, functions, commands, and
comments.

Each line in a WIL program can be up to 255 characters long.

Constants

The programming language supports both integer and string constants.

Integer Constants

Integer constants are built from the digits 0 through 9. They can range in magnitude from negative to
positive 231 - 1 (approximately two billion). Constants larger than these permissible magnitudes will
produce unpredictable results.

Examples of integer constants:

1
-45
377849
-1999999999

String Constants

String constants are comprised of displayable characters bounded by quote marks. You can use double
quotes ("), single quotes ('), or back quotes (`) to enclose a string constant, as long as the same type of
quote is used to both start and end it. If you need to embed the delimiting quote mark inside the string
constant, use the delimiting quote mark twice.

Examples of string constants:

"a"
`Betty Boop`
"This constant has an embedded "" mark"
'This constant also has an embedded " mark'

Predefined Constants

The programming language has a number of built-in integer constants that can be used for various
purposes. These start with the @-sign, and are case-insensitive (although we prefer to use ALL
CAPS).

The most used predefined constants:

@FALSE

@NO

@STACK

@TILE

@TRUE

@YES

More predefined constants can be found in the Predefined Constants List.

Identifiers

Identifiers are the names supplied for variables, functions, and commands in your program.

An identifier is a sequence of one or more letters or digits that begins with a letter. Identifiers may have
up to 30 characters.

All identifiers are case insensitive. Upper-case and lower-case characters may be mixed at will inside
variable names, commands or functions.

For example, these statements all mean the same thing:

AskLine(MyTitle, Prompt, Default)
ASKLINE(MYTITLE, PROMPT, DEFAULT)
aSkLiNe(MyTiTlE, pRoMpT, dEfAuLt)

Variables

A variable may contain an integer, a string, a list, or a string representing an integer. Automatic

conversions between integers and strings are performed as a matter of course during execution.

If a function requires a string parameter and an integer parameter is supplied, the variable will be
automatically modified to include the representative string.

If a function requires an integer parameter and a string parameter is supplied, an attempt will be made to
convert the string to an integer. If it does not convert successfully, an error will result.

Lists

A list is a string variable which itself contains one or more strings, each of which is delimited (separated)
by a common character. For example, the FileItemize function returns a list of file names, delimited by
spaces, and the WinItemize function returns a list of window names, delimited by tabs. In order to use
functions which accept a list as a parameter, such as ItemSelect, you will need to know what character is
being used to delimit your list.

Keywords

Keywords are the predefined identifiers that have special meaning to the programming language. These
cannot be used as variable names.

WIL keywords consist of the functions, commands, and predefined constants.

Some examples of reserved keywords:

Beep

DirChange

@Yes

FileCopy

Operators

The programming language operators take one operand ("unary operators") or two operands ("binary
operators").

Unary operators (integers only):

- Arithmetic Negation (Two's complement)

+ Identity (Unary plus)

~ Bitwise Not. Changes each 0 bit to 1, and vice-versa.

! Logical Not. Produces 0 (@FALSE) if the operand is nonzero, else 1
(@TRUE) if the operand is zero.

Binary arithmetic operators (integers only):

* Multiplication

/ Division

mod Modulo

+ Addition

- Subtraction

<< Left Shift

>> Right Shift

& Bitwise And

| Bitwise Or

^ Bitwise Exclusive Or (XOR)

&& Logical And

| | Logical Or

Binary relational operators (integers and strings):

> Greater-than

>= Greater-than or equal

< Less-than

<= Less-than or equal

== Equality

!= or <> Inequality

Assignment operator (integers and strings):

= Assigns evaluated result of an expression to a variable

Precedence and evaluation order

The precedence of the operators affect the evaluation of operands in expressions. Operands associated
with higher-precedence operators are evaluated before the lower-precedence operators.

The table below shows the precedence of the operators. Where operators have the same precedence,
they are evaluated from left to right.

Operator Description

() Parenthetical grouping

~ ! - + Unary operators

* / mod Multiplication & Division

+ - Addition & Subtraction

<< >> Shift operators

< <= == >= > != <> Relational operators

& ^ | Bit manipulation operators

&& || Logical operators

Comments

A comment is a sequence of characters that are ignored when processing a command. A semicolon (not
otherwise part of a string constant) indicates the beginning of a comment.

All characters to the right of the semicolon are considered comments, and are ignored.

Blank lines are also ignored.

Examples of comments:

; This is a comment
abc = 5 ; This is also a comment

Statements

Assignment Statements

Assignment statements are used to set variables to specific or computed values. Variables may be set
to integers or strings.

Examples:

a = 5
value = Average(a, 10, 15)
location = "Northern Hemisphere"
world = StrCat(location, " ", "Southern Hemisphere")

Control Statements

Control statements are generally used to execute system management functions and consist of a call to a
command without assigning any return values.

Examples:

Exit
Yield

Substitution

The WIL language has a powerful substitution feature which inserts the contents of a string variable into a
statement before the line is parsed.

To substitute the contents of a variable in the statement, simply put a percent-sign (%) on both sides of
the variable name.

Examples:

mycmd = "DirChange('c:\')" ;set mycmd to a command
%mycmd% ;execute the command

Or consider this one:

IniWrite("PC", "User", "Richard")
...
name = IniRead("PC", "User", "somebody")
message("", "Thank you, %name%")

will produce this message box:

The variable substitution feature can be used to simulate an "array" of strings. For example, if you
wanted to read the lines contained in a file into an array of variables named line1 through line# (where #
is the line number of the last line in the file), and then write them to a new file in reverse order, you could
do so as follows:

handle = FileOpen("c:\config.sys", "READ")
num = 0
:readnext
num = num + 1
line%num% = FileRead(handle)
If line%num% != "*EOF*" Then Goto readnext
FileClose(handle)
handle = FileOpen("c:\config.rev", "WRITE")
:writenext
num = num - 1
FileWrite(handle, line%num%)
If num > 1 Then Goto writenext
FileClose(handle)
Message("Processing complete", "CONFIG.REV created")

To put a single percent-sign (%) on a source line, specify a double percent sign(%%). This is required
even inside quoted strings.

Note: The length of a line, after any substitution occurs, may not exceed 255 characters.

Function Parameters

Most of the functions and commands in the language require parameters. These come in several types:

Integer

String

List

Variable name

The interpreter performs automatic conversions between strings and integers, so in general you can use
them.

Integer parameters may be any of the following:

An integer (i.e. 23)

A string representing an integer (i.e. "23")

A variable containing an integer

A variable containing a string representing an integer

String parameters may be any of the following:

A string

An integer

A variable containing a string

A variable containing a list

A variable containing an integer

Predefined Constants

WIL provides you with a number of predefined integer constants to help make your WIL programs more
mnemonic:

Logical Conditions

@FALSE

@NO

@OFF

@TRUE

@YES

@ON

Window Arranging

@NORESIZE

@ABOVEICONS

@STACK

@ARRANGE

@TITLE

@ROWS

@COLUMNS

Window Status

@NORMAL

@ZOOMED

@ICON

@HIDDEN

Menu Handling

@CHECK

@UNCHECK

@DISABLE

@ENABLE

String Handling

@FWDSCAN

@BACKSCAN

Menu Handling

@ENABLE

@DISABLE

@UNCHECK

@CHECK

System Control

@MAJOR

@MINOR

Error Handling

@CANCEL

@NOTIFY

@OFF

Keyboard Status

@SHIFT

@CTRL

Debug Control

@PARSEONLY

INI File Management

@WHOLESECTION

Error Handling

There are three types of errors that can occur while processing a WIL program: Minor, Moderate, and
Fatal. What happens when an error occurs depends on the current error mode, which is set with the
ErrorMode function.

There are three possible modes you can specify:

@CANCEL

User is notified when any error occurs, and then the WIL program is canceled. This is the default.

@NOTIFY

User is notified when any error occurs, and has option to continue unless the error is fatal.

@OFF

User is only notified if the error is moderate or fatal. User has option to continue unless the error is
fatal.

The function LastError returns the code of the most-recent error encountered during the currently-
executing WIL program.

Minor errors are numbered from 1000 to 1999.
Moderate errors are numbered from 2000 to 2999.
Fatal errors are numbered from 3000 to 3999.

Error handling is reset to @CANCEL at the start of each WIL program.

The Complete Functions & Statements

Inputting Information
AskLine (title, prompt, default)

Lets user enter a line of information.
AskPassword (title, prompt)

Prompts the user for a password.
AskYesNo (title, question)

Lets user choose from Yes, No, or Cancel.
ItemSelect (title, list, delimiter)

Chooses an item from a listbox.
TextBox (title, filename)

Fills a listbox with text strings from a file.
TextBoxSort (title, filename)

Fills a sorted listbox with text strings from a file.
TextSelect (title, list, delimiter)

Allows the user to choose an item from an unsorted listbox.
Displaying Information

Beep
Beeps at the user.

Dialog (dialog-name)
Displays a user-defined dialog box.

DialogBox (title, WDG file)
Pops up a Windows dialog box defined by the WDG template file.

Display (seconds, title, text)
Momentarily displays a string.

Message (title, text)
Displays text in a message box.

Pause (title, text)
Displays text in a message box.

TextBox (title, filename)
Fills a listbox with text strings from a file.

TextBoxSort (title, filename)
Fills a sorted listbox with text strings from a file.

TextSelect (title, list, delimiter)
Allows the user to choose an item from an unsorted listbox.

File Management
FileAppend (from-list, to-file)

Appends one or more files to another file.
FileAttrGet (filename)

Returns file attributes.
FileAttrSet (file-list, settings)

Sets file attributes.
FileClose (filehandle)

Closes a file.
FileCopy (from-list, to-file, warning)

Copies files.
FileDelete (file-list)

Deletes files.
FileExist (filename)

Determines if a file exists.
FileExtension (filename)

Returns extension of file.
FileItemize (file-list)

Builds a list of files.
FileLocate (filename)

Finds a file within the current DOS path.
FileMove (from-list, to-file, warning)

Moves files to another set of pathnames.
FileOpen (filename, open-type)

Opens a STANDARD ASCII (only) file for reading or writing.
FilePath (filename)

Returns path of file.
FileRead (filehandle)

Reads data from a file.
FileRename (from-list, to-file)

Renames files to another set of names.
FileRoot (filename)

Returns root of file.
FileSize (file-list)

Adds up the total size of a set of files.
FileTimeGet (filename)

Returns file date and time.
FileTimeTouch (file-list)

Sets file (s) to current time.
FileWrite (filehandle,output-data)

Writes data to a file.
IniDelete (section, keyname)

Removes a line or section from WIN.INI.
IniDeletePvt (section, keyname, filename)

Removes a line or section from a private INI file.
IniItemize (section)

Lists keywords or sections in WIN.INI.
IniItemizePvt (section, filename)

Lists keywords or sections in a private INI file.
IniRead (section, keyname, default)

Reads a string from the WIN.INI file.
IniReadPvt (section, keyname, default, filename)

Reads a string from a private INI file.
IniWrite (section, keyname, string)

Writes a string to the WIN.INI file.
IniWritePvt (section, keyname, data, filename)

Writes a string to a private INI file.
Directory Management

DirChange ([d:]path)
Changes the current directory.

DirGet ()
Returns the current directory path.

DirHome ()
Returns the initial directory path.

DirItemize (dir-list)
Builds a list of directories.

DirMake ([d:]path)
Creates a new directory.

DirRemove ([d:]path)
Removes an existing directory.

DirRename ([d:]oldpath, [d:]newpath)
Renames a directory.

DirWindows (request#)
Returns the name of the Windows or Windows System directory.

Disk Drive Management
DiskFree (drive-list)

Returns the amount of free space on a set of drives.
DiskScan (request#)

Returns list of drives.
LogDisk (drive)

Changes the logged disk drive.
Window Management

AppExist (program-name)
Tells if an application is running.

AppWaitClose (program-name)
Suspends WIL program execution until a specified application has been closed.

IconArrange ()
Rearranges icons.

WinActivate (partial-winname)
Makes an application window the active window.

WinArrange (style)
Arranges all running application windows on the screen.

WinClose (partial-winname)
Closes an application window.

WinCloseNot (partial-winname [, partial-winname...])
Closes all application windows except those specified.

WinExeName (partial-winname)
Returns the name of the executable file which created a specified window.

WinExist (partial-winname)
Tells if window exists.

WinGetActive ()
Gets the title of the active window.

WinHide (partial-winname)
Hides an application window.

WinIconize (partial-winname)
Turns an application window into an icon.

WinItemize ()
Lists all the main windows currently running.

WinName ()
Returns the name of the window calling the WIL Interpreter.

WinPlace (x-ul, y-ul, x-br, y-br, partial-winname)
Changes the size and position of an application window on the screen.

WinPlaceGet (win-type, partial-winname)
Returns window coordinates.

WinPlaceSet (win-type, partial-winname, position-string)
Sets window coordinates.

WinPosition (partial-winname)
Returns window position.

WinShow (partial-winname)
Shows a currently-hidden application window.

WinState (partial-winname)
Returns the current state of a window.

WinTitle (partial-winname, new-winname)
Changes the title of an application window.

WinWaitClose (partial-winname)
Waits until an application window is closed.

WinZoom (partial-winname)
Maximizes an application window to full-screen.

Program Management
Run (program-name, parameters)

Runs a program as a normal window.
RunHide (program-name, parameters)

Runs a program in a hidden window.
RunHideWait (program-name, parameters)

Runs a program in a hidden window, and waits for it to close.
RunIcon (program-name, parameters)

Runs a program as an icon.
RunIconWait (program-name, parameters)

Runs a program as an icon, and waits for it to close.
RunWait (program-name, parameters)

Runs a program as a normal window, and waits for it to close.
RunZoom (program-name, parameters)

Runs a program in a maximized window.
RunZoomWait (program-name, parameters)

Runs a program in a maximized window, and waits for it to close.
String Handling

Char2Num (string)
Returns the ANSI code of a string's first character.

IsNumber (string)
Determines if a string represents a valid number.

ItemCount (list, delimiter)
Returns the number of items in a list.

ItemExtract (select, list, delimiter)
Returns the selected item from a list.

ItemInsert (item, index, list, delimiter)
Adds an item to a list.

ItemLocate (item, list, delimiter)
Returns the position of an item in a list.

ItemRemove (index, list, delimiter)
Removes an item from a list.

ItemSort (list, delimiter)
Sorts a list.

Num2Char (number)
Converts a number to the ANSI character it represents.

ParseData (string)
Parses the passed string, just like passed parameters are parsed.

StrCat (string[, string...])
Concatenates strings together.

StrCmp (string1, string2)
Compares two strings.

StrFill (string, string-length)
Builds a string from a repeated smaller string.

StrFix (base-string, padding-string, length)
Pads or truncates a string to a fixed length.

StriCmp (string1, string2)
Compares two strings, ignoring their case.

StrIndex (main-str, sub-str, start, direction)
Locates a string within a larger string.

StrLen (string)
Returns the length of a string

StrLower (string)
Converts a string to all lower-case characters.

StrReplace (string, old, new)
Replaces all occurences of a substring with another.

StrScan (main-str, delims, start, direction)
Finds an occurrence of one or more delimiter characters in a string.

StrSub (string, start, length)
Returns a substring from within a string.

StrTrim (string)
Trims leading and trailing blanks from a string.

StrUpper (string)
Converts a string to all upper-case characters.

Arithmetic Functions
Abs (number)

Returns the absolute value of a number.
Average (num [, num...])

Returns the average of a list of numbers.
Max (num [, num...])

Determines the highest number in a list.
Min (num [, num...])

Determines the lowest number in a list.
Random (max)

Generates a positive random number.
Clipboard Handling

ClipAppend (string)
Appends a string to the end of the Clipboard.

ClipGet ()
Returns the Clipboard contents into a string.

ClipPut (string)
Replaces the Clipboard contents with a string.

Process Control
Call (filename, parameters)

Calls a WIL batch file as a subroutine.
Debug (mode)

Turns Debug mode on or off.
Delay (seconds)

Pauses WIL program execution.
Drop (var [, var...])

Deletes variables to recover their memory.
Else statement

Continues a previous If statement.
EndSession ()

Ends the current Windows session.
ErrorMode (mode)

Sets what happens in the event of an error.
Exclusive (mode)

Controls whether or not other Windows program will get any time to execute.
Execute statement

Directly executes a WIL statement.
Exit

Unconditionally ends a WIL program.
Goto label

Changes the flow of control in a WIL program.
Ifcondition Then statement

Conditionally performs a function.
IgnoreInput (mode)

Turns off hardware input to windows.
IsDefined (variable)

Determines if a variable is currently defined.
IsKeyDown (key-codes)

Tells about keys/mouse.
LastError ()

Returns the last error encountered.
Return

Returns from a Call to the calling program.
SKDebug (mode)

Controls how SendKey works
Terminate

Conditionally ends a WIL program.
Then statement

Continues a previous If statement.
WaitForKey

Waits for a specific key to be pressed.
Yield

Pauses WIL processing so other applications can process some messages.
Miscellaneous Functions

ButtonNames (OK-name, Cancel-name)
Changes the names of the buttons which appear in WIL dialogs.

IntControl (request#, p1, p2, p3, p4)
Internal control functions.

Reload ()
Reloads menu file (s).

SendKey (character-codes)
Sends keystrokes to the active application.

SnapShot (request#)
Takes a snapshot of the screen and pastes it to the clipboard.

WallPaper (bmp-name, tile)
Changes the Windows wallpaper.

WinParmSet (request#, new-value, ini-control)
Sets system information.

WinHelp (help-file, function, keyword)
Calls a Windows help file.

System Information
DateTime ()

Returns the current date and time.
DOSVersion (level)

Returns the version numbers of the current version of DOS.
Environment (env-variable)

Returns the value of a DOS environment variable.
IsLicensed ()

Tells if the calling application is licensed.
MouseInfo (request#)

Returns assorted mouse information.
Version ()

Returns the version of the parent program currently running.
VersionDLL ()

Returns the version of the WIL Interpreter currently running.
WinConfig ()

Returns WIN3 mode flags.
WinMetrics (request#)

Returns Windows system information.
WinParmGet (request#)

Returns system information.
WinParmSet (request#, new-value, ini-control)

Sets system information.
WinResources (request#)

Returns information on available memory and resources.
WinVersion (level)

Returns the version of Windows that is currently running.
DDE Functions

DDEExecute (channel, command string)
Sends commands to a DDE server application.

DDEInitiate (app name, topic name)
Opens a DDE channel.

DDEPoke (channel, item name, item value)
Sends data to a DDE server application.

DDERequest (channel, item name)
Gets data from a DDE server application.

DDETerminate (channel)
Closes a DDE channel.

DDETimeout (value)
Sets the DDE timeout value.

Network Functions
NetAddCon (net-path, password, local-name)

Connects network resources to imaginary local disk drives or printer ports.
NetAttach (server-name)

Attaches to a network file server.
NetBrowse (request#)

Displays a network dialog box allowing the user to select a network resource.
NetCancelCon (name, force)

Breaks a network connection.
NetDetach (server-name)

Detaches from a network file server.
NetDialog ()

Brings up the network driver's dialog box.
NetGetCaps (request#)

Returns information on network capabilities.
NetGetCon (local-name)

Returns the name of a connected network resource.
NetGetUser ()

Returns the name of the user currently logged into the network.
NetLogin (server-name, user-name, password)

Performs a network login.
NetLogout (server-name)

Performs a network logout.
NetMapRoot (local-name, net-path)

Maps a local drive to a network resource.
NetMemberGet (server-name, group-name)

Determines whether the current user is a member of a specific group.
NetMemberSet (server-name, group-name)

Sets the current user as a member of a group.
NetMsgAll (server-name, message)

Broadcasts a message to all users on the network.
NetMsgSend (server-name, user-name, message)

Sends a message to a specific user on the network.
Multimedia Functions

PlayMedia (command-string)
Controls multimedia devices.

PlayMidi (filename, mode)
Plays a MID or RMI sound file.

PlayWaveForm (filename, mode)
Plays a WAV sound file.

Sounds (request#)
Turns sounds on or off.

Menu Management (Special Functions)
CurrentFile ()

Returns the selected filename.
IsMenuChecked (menuname)

Determines if a menu item has a checkmark next to it.
IsMenuEnabled (menuname)

Determines if a menu item has been enabled.
MenuChange (menuname, flags)

Checks, unchecks, enables, or disables a menu item.

Inputting Information
AskLine (title, prompt, default)

Lets user enter a line of information.
AskPassword (title, prompt)

Prompts the user for a password.
AskYesNo (title, question)

Lets user choose from Yes, No, or Cancel.
ItemSelect (title, list, delimiter)

Chooses an item from a listbox.
TextBox (title, filename)

Fills a listbox with text strings from a file.
TextBoxSort (title, filename)

Fills a sorted listbox with text strings from a file.
TextSelect (title, list, delimiter)

Allows the user to choose an item from an unsorted listbox.

Displaying Information
Beep

Beeps at the user.
Dialog (dialog-name)

Displays a user-defined dialog box.
DialogBox (title, WDG file)

Pops up a Windows dialog box defined by the WDG template file.
Display (seconds, title, text)

Momentarily displays a string.
Message (title, text)

Displays text in a message box.
Pause (title, text)

Displays text in a message box.
TextBox (title, filename)

Fills a listbox with text strings from a file.
TextBoxSort (title, filename)

Fills a sorted listbox with text strings from a file.
TextSelect (title, list, delimiter)

Allows the user to choose an item from an unsorted listbox.

File Management
FileAppend (from-list, to-file)

Appends one or more files to another file.
FileAttrGet (filename)

Returns file attributes.
FileAttrSet (file-list, settings)

Sets file attributes.
FileClose (filehandle)

Closes a file.
FileCopy (from-list, to-file, warning)

Copies files.
FileDelete (file-list)

Deletes files.
FileExist (filename)

Determines if a file exists.
FileExtension (filename)

Returns extension of file.
FileItemize (file-list)

Builds a list of files.
FileLocate (filename)

Finds a file within the current DOS path.
FileMove (from-list, to-file, warning)

Moves files to another set of pathnames.
FileOpen (filename, open-type)

Opens a STANDARD ASCII (only) file for reading or writing.
FilePath (filename)

Returns path of file.
FileRead (filehandle)

Reads data from a file.
FileRename (from-list, to-file)

Renames files to another set of names.
FileRoot (filename)

Returns root of file.
FileSize (file-list)

Adds up the total size of a set of files.
FileTimeGet (filename)

Returns file date and time.
FileTimeTouch (file-list)

Sets file (s) to current time.
FileWrite (filehandle,output-data)

Writes data to a file.
IniDelete (section, keyname)

Removes a line or section from WIN.INI.
IniDeletePvt (section, keyname, filename)

Removes a line or section from a private INI file.
IniItemize (section)

Lists keywords or sections in WIN.INI.
IniItemizePvt (section, filename)

Lists keywords or sections in a private INI file.
IniRead (section, keyname, default)

Reads a string from the WIN.INI file.
IniReadPvt (section, keyname, default, filename)

Reads a string from a private INI file.
IniWrite (section, keyname, string)

Writes a string to the WIN.INI file.
IniWritePvt (section, keyname, data, filename)

Writes a string to a private INI file.

Directory Management
DirChange ([d:]path)

Changes the current directory.
DirGet ()

Returns the current directory path.
DirHome ()

Returns the initial directory path.
DirItemize (dir-list)

Builds a list of directories.
DirMake ([d:]path)

Creates a new directory.
DirRemove ([d:]path)

Removes an existing directory.
DirRename ([d:]oldpath, [d:]newpath)

Renames a directory.
DirWindows (request#)

Returns the name of the Windows or Windows System directory.

Disk Drive Management
DiskFree (drive-list)

Returns the amount of free space on a set of drives.
DiskScan (request#)

Returns list of drives.
LogDisk (drive)

Changes the logged disk drive.

Window Management
AppExist (program-name)

Tells if an application is running.
AppWaitClose (program-name)

Suspends WIL program execution until a specified application has been closed.
IconArrange ()

Rearranges icons.
WinActivate (partial-winname)

Makes an application window the active window.
WinArrange (style)

Arranges all running application windows on the screen.
WinClose (partial-winname)

Closes an application window.
WinCloseNot (partial-winname [, partial-winname...])

Closes all application windows except those specified.
WinExeName (partial-winname)

Returns the name of the executable file which created a specified window.
WinExist (partial-winname)

Tells if window exists.
WinGetActive ()

Gets the title of the active window.
WinHide (partial-winname)

Hides an application window.
WinIconize (partial-winname)

Turns an application window into an icon.
WinItemize ()

Lists all the main windows currently running.
WinName ()

Returns the name of the window calling the WIL Interpreter.
WinPlace (x-ul, y-ul, x-br, y-br, partial-winname)

Changes the size and position of an application window on the screen.
WinPlaceGet (win-type, partial-winname)

Returns window coordinates.
WinPlaceSet (win-type, partial-winname, position-string)

Sets window coordinates.
WinPosition (partial-winname)

Returns window position.
WinShow (partial-winname)

Shows a currently-hidden application window.
WinState (partial-winname)

Returns the current state of a window.
WinTitle (partial-winname, new-winname)

Changes the title of an application window.
WinWaitClose (partial-winname)

Waits until an application window is closed.
WinZoom (partial-winname)

Maximizes an application window to full-screen.

Program Management
Run (program-name, parameters)

Runs a program as a normal window.
RunHide (program-name, parameters)

Runs a program in a hidden window.
RunHideWait (program-name, parameters)

Runs a program in a hidden window, and waits for it to close.
RunIcon (program-name, parameters)

Runs a program as an icon.
RunIconWait (program-name, parameters)

Runs a program as an icon, and waits for it to close.
RunWait (program-name, parameters)

Runs a program as a normal window, and waits for it to close.
RunZoom (program-name, parameters)

Runs a program in a maximized window.
RunZoomWait (program-name, parameters)

Runs a program in a maximized window, and waits for it to close.

String Handling
Char2Num (string)

Returns the ANSI code of a string's first character.
IsNumber (string)

Determines if a string represents a valid number.
ItemCount (list, delimiter)

Returns the number of items in a list.
ItemExtract (select, list, delimiter)

Returns the selected item from a list.
ItemInsert (item, index, list, delimiter)

Adds an item to a list.
ItemLocate (item, list, delimiter)

Returns the position of an item in a list.
ItemRemove (index, list, delimiter)

Removes an item from a list.
ItemSort (list, delimiter)

Sorts a list.
Num2Char (number)

Converts a number to the ANSI character it represents.
ParseData (string)

Parses the passed string, just like passed parameters are parsed.
StrCat (string[, string...])

Concatenates strings together.
StrCmp (string1, string2)

Compares two strings.
StrFill (string, string-length)

Builds a string from a repeated smaller string.
StrFix (base-string, padding-string, length)

Pads or truncates a string to a fixed length.
StriCmp (string1, string2)

Compares two strings, ignoring their case.
StrIndex (main-str, sub-str, start, direction)

Locates a string within a larger string.
StrLen (string)

Returns the length of a string
StrLower (string)

Converts a string to all lower-case characters.
StrReplace (string, old, new)

Replaces all occurances of a substring with another.
StrScan (main-str, delims, start, direction)

Finds an occurrence of one or more delimiter characters in a string.
StrSub (string, start, length)

Returns a substring from within a string.
StrTrim (string)

Trims leading and trailing blanks from a string.
StrUpper (string)

Converts a string to all upper-case characters.

Arithmetic Functions
Abs (number)

Returns the absolute value of a number.
Average (num [, num...])

Returns the average of a list of numbers.
Max (num [, num...])

Determines the highest number in a list.
Min (num [, num...])

Determines the lowest number in a list.
Random (max)

Generates a positive random number.

Clipboard Handling
ClipAppend (string)

Appends a string to the end of the Clipboard.
ClipGet ()

Returns the Clipboard contents into a string.
ClipPut (string)

Replaces the Clipboard contents with a string.

Process Control
Call (filename, parameters)

Calls a WIL batch file as a subroutine.
Debug (mode)

Turns Debug mode on or off.
Delay (seconds)

Pauses WIL program execution.
Drop (var [, var...])

Deletes variables to recover their memory.
Else statement

Continues a previous If statement.
EndSession ()

Ends the current Windows session.
ErrorMode (mode)

Sets what happens in the event of an error.
Exclusive (mode)

Controls whether or not other Windows program will get any time to execute.
Execute statement

Directly executes a WIL statement.
Exit

Unconditionally ends a WIL program.
Goto label

Changes the flow of control in a WIL program.
Ifcondition Then statement

Conditionally performs a function.
IgnoreInput (mode)

Turns off hardware input to windows.
IsDefined (variable)

Determines if a variable is currently defined.
IsKeyDown (key-codes)

Tells about keys/mouse.
LastError ()

Returns the last error encountered.
Return

Returns from a Call to the calling program.
SKDebug (mode)

Controls how SendKey works
Terminate

Conditionally ends a WIL program.
Then statement

Continues a previous If statement.
WaitForKey

Waits for a specific key to be pressed.
Yield

Pauses WIL processing so other applications can process some messages.

Miscellaneous Functions
ButtonNames (OK-name, Cancel-name)

Changes the names of the buttons which appear in WIL dialogs.
IntControl (request#, p1, p2, p3, p4)

Internal control functions.
Reload ()

Reloads menu file (s).
SendKey (character-codes)

Sends keystrokes to the active application.
SnapShot (request#)

Takes a snapshot of the screen and pastes it to the clipboard.
WallPaper (bmp-name, tile)

Changes the Windows wallpaper.
WinParmSet (request#, new-value, ini-control)

Sets system information.
WinHelp (help-file, function, keyword)

Calls a Windows help file.

System Information
DateTime ()

Returns the current date and time.
DOSVersion (level)

Returns the version numbers of the current version of DOS.
Environment (env-variable)

Returns the value of a DOS environment variable.
IsLicensed ()

Tells if the calling application is licensed.
MouseInfo (request#)

Returns assorted mouse information.
Version ()

Returns the version of the parent program currently running.
VersionDLL ()

Returns the version of the WIL Interpreter currently running.
WinConfig ()

Returns WIN3 mode flags.
WinMetrics (request#)

Returns Windows system information.
WinParmGet (request#)

Returns system information.
WinParmSet (request#, new-value, ini-control)

Sets system information.
WinResources (request#)

Returns information on available memory and resources.
WinVersion (level)

Returns the version of Windows that is currently running.

DDE Functions
DDEExecute (channel, command string)

Sends commands to a DDE server application.
DDEInitiate (app name, topic name)

Opens a DDE channel.
DDEPoke (channel, item name, item value)

Sends data to a DDE server application.
DDERequest (channel, item name)

Gets data from a DDE server application.
DDETerminate (channel)

Closes a DDE channel.
DDETimeout (value)

Sets the DDE timeout value.

Network Functions
NetAddCon (net-path, password, local-name)

Connects network resources to imaginary local disk drives or printer ports.
NetAttach (server-name)

Attaches to a network file server.
NetBrowse (request#)

Displays a network dialog box allowing the user to select a network resource.
NetCancelCon (name, force)

Breaks a network connection.
NetDetach (server-name)

Detaches from a network file server.
NetDialog ()

Brings up the network driver's dialog box.
NetGetCaps (request#)

Returns information on network capabilities.
NetGetCon (local-name)

Returns the name of a connected network resource.
NetGetUser ()

Returns the name of the user currently logged into the network.
NetLogin (server-name, user-name, password)

Performs a network login.
NetLogout (server-name)

Performs a network logout.
NetMapRoot (local-name, net-path)

Maps a local drive to a network resource.
NetMemberGet (server-name, group-name)

Determines whether the current user is a member of a specific group.
NetMemberSet (server-name, group-name)

Sets the current user as a member of a group.
NetMsgAll (server-name, message)

Broadcasts a message to all users on the network.
NetMsgSend (server-name, user-name, message)

Sends a message to a specific user on the network.

Multimedia Functions
PlayMedia (command-string)

Controls multimedia devices.
PlayMidi (filename, mode)

Plays a MID or RMI sound file.
PlayWaveForm (filename, mode)

Plays a WAV sound file.
Sounds (request#)

Turns sounds on or off.

Menu Management (Special Functions)
CurrentFile ()

Returns the selected filename.
IsMenuChecked (menuname)

Determines if a menu item has a checkmark next to it.
IsMenuEnabled (menuname)

Determines if a menu item has been enabled.
MenuChange (menuname, flags)

Checks, unchecks, enables, or disables a menu item.

WIL FUNCTION REFERENCE

Introduction

The WIL programming language consists of a large number of functions and commands, which we
describe in detail in this section.

We use a shorthand notation to indicate the syntax of the functions.

Function names and other actual characters you type are in boldface. Optional parameters are
enclosed in square brackets "[]". When a function takes a variable number of parameters, the variable
parts will be followed by ellipses ("...").

Take, for example, string concatenation:

StrCat (string[, string...])

This says that the StrCat function takes at least one string parameter. Optionally, you can specify more
strings to concatenate. If you do, you must separate the strings with commas.

For each function and command, we show you the Syntax, describe the Parameters (if any), the value it
Returns (if any), a description of the function, Example code, and related functions you may want to

See Also.

Items marked (*M) are available only in menu script usages.

(i) indicates an integer parameter or return value.
(s) indicates a string parameter or return value.

Errors

If the current error mode is @CANCEL (the default), any WIL errors encountered while processing a WIL
program cause the item to be canceled with an error message.

Minor Errors

Minor errors are ignored if the current error mode has been set to @OFF. If the error mode is @NOTIFY
the user has the option of continuing with the WIL program or canceling it.

1006 File Copy/Move: No matching files found

1017 File Delete: No matching files found

1018 File Delete: Delete Failed

1024 File Rename: No matching files found

1025 File Rename: Rename failed

1028 LogDisk: Requested drive not online

1029 DirMake: Dir not created

1030 DirRemove: Dir not removed

1031 DirChange: Dir not found/changed

1039 WinClose: Window not found

1040 WinHide: Window not found

1041 WinIconize: Window not found

1042 WinZoom: Window not found

1043 WinShow: Window not found

1044 WinPlace: Window not found

1045 WinActivate: Window not found

1077 FileOpen: Open failed

1083 FileAttrGet: File not found

1086 FileAttrSet: File not found or access denied

1100 StrIndex/StrScan 3rd parameter out of bounds

1119 WinPosition: Window not found

1121 WinTitle: Window not found

1125 FileTimeGet: File not found

1128 FileTimeTouch: File not found

1150 DDEExec: DDE Post failed

1155 DDEReq: DDE Post failed

1163 DDEPoke: DDE Post failed

1164 DDEPoke: DDE Timeout

1165 DDEReq: DDE Timeout

1166 DDEExec: DDE Timeout

1172 WinExeName: Window not found

1173 Net: No network found

1174 Net: Security Violation

1175 Net: Function not supported

1176 Net: Out of Memory

1177 Net: Network Error

1178 Net: Windows function failed

1179 Net: Invalid type of request

1180 Net: Invalid Pointer

1181 Net: Cancelled at users request

1182 Net: Bad user / Not logged in

1183 Net: Buffer too small - Internal Error

1184 Net: Invalid Network name

1185 Net: Invalid Local Name

1186 Net: Invalid Password

1187 Net: Local Device already connected

1188 Net: Not a valid local device or network name

1189 Net: Not a redirected local device or current net name

1190 Net: Files were open with FORCE=FALSE

1191 Net: Function busy

1192 Net: Unknown network error

1193 Function not supported in this version of Windows

1194 PlaySounds: File not found

1195 PlayMedia: Unrecognized Error

1200 WinPlaceGet/Set: Window not found

1201 WinPlaceGet/Set: Function failed

1207 SnapShot: Out of memory

1208 SnapShot: Palette Creation Error

1209 SnapShot: Cannot open clipboard

1213 Cmd Extender: Minor error occurred

1216 RunWait Commands not supported in 3.0 Debug Windows

1217 WinHelp: Invalid SubCommand Requested

Moderate Errors

If the error mode is @NOTIFY or @OFF, the user has the option of continuing with the WIL program or
canceling it.

2001 SendKey: Illegal Parameters

2002 File Copy/Move: 'From' file illegal

2003 File Copy/Move: 'To' file illegal

2004 File Copy/Move: Cannot put wildcards into fixed root

2005 File Copy/Move: Cannot put wildcards into fixed extension

2007 File Move: Unable to rename source file

2016 File Delete: File name illegal

2019 File Rename: 'From' file illegal

2020 File Rename: 'To' file illegal

2021 File Rename: Can't change disk drives. Use MOVE instead.

2022 File Rename: Cannot put wildcards into a fixed root

2023 File Rename: Cannot put wildcards into a fixed extension

2038 WinCloseNot Function Syntax error

2058 StrCat: Function syntax error

2060 AVERAGE function syntax error

2093 Dialog Box: Bad Filespec, using *.*

2106 SetDisplay: Type not NAME, DATE, SIZE, KIND or UNSORTED

2112 FileSize: File Not Found

2118 FileCopy/Move: Destination file same as source

2120 SetDisplay: Display type not SHORT or LONG

2122 FileAppend: Target cannot be wildcarded

2203 Dir Rename: 'From' file illegal

2204 Dir Rename: 'To' file illegal

2214 Cmd Extender: Moderate Error Occurred

Fatal Errors

Fatal errors cause the current WIL program to be canceled with an error message, regardless of the error
mode in effect. (We show the error codes here for consistency, but in practice you will never be able to
call LastError after a fatal error.)

3008 File Copy/Move: 'From' file open error

3009 SendKey: Could not open DEBUG TEXT file

3010 SendKey: Could not install hook - Already Active??

3011 File Copy/Move: 'From' file length error

3012 File Copy/Move: No room left on disk. Out of space??

3013 File Copy/Move: 'To' file open error

3014 File Copy/Move: I/O Error

3015 File Move: Unable to remove source file

3026 LogDisk: Illegal disk drive

3027 LogDisk: DOS reports no disks!! ???

3032 GoTo unable to lock memory for batch file

3033 GoTo label not found

3034 Clipboard owned by another app. Cannot open.

3035 Clipboard does not contain text for CLIPAPPEND.

3036 Clipboard cannot hold that much text (>64000 bytes)

3037 Unable to get memory for clipboard. Close some apps

3046 Internal Error 3046. Function not defined

3047 Variable name over 30 chars. Too Long

3048 Substitution %Variable% not followed by a % (Use %% for %)

3049 No variables exist??!!

3050 Undefined variable

3051 Undefined variable or function

3052 Uninitialized variable or undefined function

3053 Character string too long (>256 chars??)

3054 Unrecognizable item found on line

3055 Variable name over 30 chars. Too Long

3056 Variable could not be converted to string

3057 Variable could not be converted to integer

3059 Illegal Bounds for STRSUB function

3061 Illegal Syntax

3062 Attempt to divide by zero

3063 Internal Error 3063. Binary op not found

3064 Internal Error 3064. Unary op not found

3065 Unbalanced Parenthesis

3066 Wrong Number of Arguments in Function

3067 Function Syntax. Opening parenthesis missing.

3068 Function Syntax. Illegal delimiter found.

3069 Bad assignment statement. (Use == for equality testing)

3070 Internal error 3070. Too many arguments defined.

3071 Missing or incomplete statement

3072 THEN not found in IF statement

3073 Goto Label not specified

3074 Expression continues past expected end.

3075 Call: Parse of file/parameter line failed

3076 FileOpen: READ or WRITE not properly specified

3078 FileOpen: Too many (>5) files open

3079 FileClose: Invalid file handle

3080 FileClose: File not currently open

3081 FileRead: Invalid file handle

3082 FileRead: File not currently open

3084 FileWrite: Invalid file handle

3085 FileWrite: File not currently open

3087 FileRead: File not open for reading

3088 FileRead: Attempt to read past end of file

3089 FileWrite: File not open for writing

3090 Dialog Box: File open error

3091 Dialog Box: Box too large (20x60 max)

3092 Dialog Box: Non-text control used w/filebox.

3094 Dialog Box: Window Registration Failed

3095 Compare: Not an integer or string compare

3096 Memory allocation failure. Out of memory for strings

3097 Memory allocation failure. Out of memory for variables

3098 IntErr: NULL pointer passed to xstrxxx subroutines

3099 CallExt function disabled. Not currently available.

3101 Substituted line too long. (> 256 characters)

3102 Drop: Can only drop variables

3103 IsDefined: Attempting to test non-variable item

3104 Dialog Box: Window Creation Failed

3105 CALL and CALLEXT not supported in compiled versions

3107 Run: Filetype is not COM, EXE, PIF or BAT

3108 FileItemize: Unable to lock file info segment

3109 FileItemize: Unable to unlock file info segment

3110 FileItemize: Unable to lock file index segment

3111 FileItemize: Unable to unlock file index segment

3113 FileSize: Filelength I/O Error

3114 FileSize: Buffer Overrun Error

3115 FileDelete: Buffer Overrun Error

3116 FileRename: Buffer Overrun Error

3117 FileCopy/Move: Buffer Overrun Error

3123 WaitForKey: Invalid key codes specified

3124 WinMetrics: Invalid code

3126 FileAttrSet: Buffer Overrun Error

3127 FileTimeTouch: Buffer Overrun Error

3138 DDE: Too many DDE conversations

3139 DDEInitiate: Client window create failed

3140 DDEInitiate: GlobalAddAtom failure

3142 DDETerminate: Channel does not exist

3144 DDETerminate: Internal Error 3144

3145 DDEExec: GlobalAlloc failed

3146 DDEExec: Global Lock failed

3147 DDEExec: Bad channel number

3149 DDEExec: Internal Error 3149

3154 DDEReq: GlobalAddAtom failed

3156 DDEReq: GlobalLock failed

3160 DDEPoke: GlobalAlloc failed

3161 DDEPoke: GlobalAddAtom failed

3162 DDEPoke: GlobalLock failed

3167 DDE Recv Data: GlobalLock 1 failed

3168 DDE Recv Data: GlobalAlloc 2 failed

3169 DDE Recv Data: GlobalLock 2 failed

3170 DDEInitiate: Internal Error 3170

3171 IntControl: Invalid IntControl opcode

3196 PlayMedia: Do not use WAIT or NOTIFY in MCI string

3197 WinResources: Invalid request number

3198 WinParmGet/Set: Invalid request number

3199 WinPlaceGet/Set: Invalid window-size number

3202 WinPlaceSet: Wrong number of window co-ordinates

3205 MouseInfo: Invalid request number

3206 SnapShot: Invalid request number

3210 Cmd Extender: Out of memory to save result

3211 Call: More than 6 levels of Calls

3212 PlayMedia: Notify Window creation failed

3215 Cmd Extender: Severe error occurred

3218 Dialog: Dialog name too long (>16 chars)

3219 Dialog: Format variable missing

3220 Dialog: Format version not supported

3221 Dialog: x, y, width or height variables bad

3222 Dialog: Control definition variable missing

3223 Dialog: Bad Control type in definition variable

3224 Dialog: Bad or missing Value for Radio/Checkbox button

3225 Dialog: Too many items in definition variable

AppExist

Tells if an application is running.

Syntax:

AppExist (program-name)

Parameters:

(s) program-name name of a Windows EXE or DLL file.

Returns:

(i) @TRUE if the specified application is running;
@FALSE if the specified application is not running.

Use this function to determine whether a specific Windows application is currently running. Unlike
WinExist, you can use AppExist without knowing the title of the application's window.

"Program-name" is the name of a Windows EXE or DLL file, including the file extension (and, optionally, a
full path to the file).

Example:

If AppExist("clock.exe") == @FALSE Then Run("clock.exe", "")

See Also:

AppWaitClose, Run, WinExeName, WinExist

AppWaitClose

Suspends WIL program execution until a specified application has been closed.

Syntax:

AppWaitClose (program-name)

Parameters:

(s) program-name name of a Windows EXE or DLL file.

Returns:

(i) @TRUE if the specified application is running;
@FALSE if the specified application is not running.

Use this function to suspend the WIL program's execution until the user has finished using a given
application and has manually closed it. Unlike WinWaitClose, you can use AppWaitClose without
knowing the title of the application's window.

"Program-name" is the name of a Windows EXE or DLL file, including the file extension (and, optionally, a
full path to the file).

Example:

Run("clock.exe", "")
Display(4, "Note", "Close Clock to continue")
AppWaitClose("clock.exe")
Message("Continuing...", "Clock closed")

See Also:

AppExist, Delay, RunWait, WinExeName, Yield

Abs

Returns the absolute value of a number.

Syntax:

Abs (integer)

Parameters:

integer = integer whose absolute value is desired.

Returns:

(integer) absolute value of integer.

This function returns the absolute (positive) value of the integer which is passed to it, regardless of
whether that integer is positive or negative.

Example:

dy = Abs(y1 - y2)

Message("Years", "There are %dy% years 'twixt %y1% and %y2%")

See Also:

Average, Max, Min, IsNumber

AskLine

Prompts the user for one line of input.

Syntax:

AskLine (title, prompt, default)

Parameters:

"title" = title of the dialog box.

"prompt" = question to be put to the user.

"default" = default answer.

Returns:

(string) user response.

Use this function to query the user for a line of data. The entire user response will be returned if the user
presses the OK button or the Enter key. If the user presses Cancel, the batch file processing is canceled.

Example:

name = AskLine("Game", "Please enter your name", "")

game = AskLine("Game", "Favorite game?", "Solitaire")

message(StrCat(name,"'s favorite game is "), game)

The first line displays a dialog that lets the user enter a name.

The second line displays a dialog that lets the user enter a game.

The third line combines the results from the first two and displays a dialog with the information
entered in the previous dialogs.

See Also:

AskPassword,AskYesNo, Dialog, Display, ItemSelect, Message, Pause, TextBox,
TextSelect

AskPassword

Prompts the user for a password.

Syntax:

AskPassword (title, prompt)

Parameters:

(s) title title of the dialog box.

(s) prompt question to be put to the user.

Returns:

(s) user response.

Pops up a special dialog box to ask for passwords. An asterisk (*) is echoed for each character that the
user types; the actual characters entered are not displayed.

Example:

pw = AskPassword("Security check", "Please enter your password")

If StriCmp(pw, "winguy") != 0 Then Goto nogo

Run(Environment("COMSPEC"), "")

Exit

:nogo

Pause("Security breach", "Invalid password entered")

See Also:

AskLine, AskYesNo, DialogBox

AskYesNo

Prompts the user for a YES or NO answer.

Syntax:

AskYesNo (title, question)

Parameters

"title" = title of the question box.

"question" = question to be put to the user.

Returns:

(integer) @YES or @NO, depending on the button pressed.

This function displays a message box with three pushbuttons - Yes, No, and Cancel. If the user presses
Cancel, the current batch file is ended, so there is no return value.

Example:

q = AskYesNo('Testing', 'Please press "YES"')

If q == @YES Then Exit

Display(3, 'ERROR', 'I said press "YES"')

See Also:

AskLine, Display, ItemSelect, Message, Pause, TextBox

Average

Returns the average of a list of numbers.

Syntax:

Average (integer [, integer]...)

Parameters:

integer = integers to get the average of.

Returns:

(integer) average of the integers.

Use this function to compute the mean average of a series of numbers, delimited by commas. This
function returns an integer value, so there can be some rounding error involved.

Example:

avg = Average(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

Message("The average is", avg)

See Also:
Abs, Max, Min,Random

Beep

Beeps once.

Syntax:

Beep

Use this command to produce a short beep, generally to alert the user to an error situation.

Example:

Beep

Pause("WARNING!!!", "You are about to destroy data!")

See Also:

PlayMedia, PlayMidi, PlayWaveForm, Sounds

ButtonNames

Changes the names of the buttons which appear in WIL dialogs.

Syntax:

ButtonNames (OK-name, Cancel-name)

Parameters:

(s) OK-name new name for the OK button.

(s) Cancel-name new name for the Cancel button.

Returns:

(i) always 1.

This function allows you to specify alternate names for the OK and/or Cancel buttons which appear in any
dialogs displayed by the WIL Interpreter. Each use of the ButtonNames statement only affects the next
WIL dialog which is displayed.

You can specify a null string ("") for either the OK-name or Cancel-Name parameter, to use the default
name for that button (i.e., "OK" or "Cancel").

You can place an ampersand before the character which you want to be the underlined character in the
dialog.

Example:

ButtonNames("", "&Abort")
user = AskLine("Hello", "What is your name", "")
Message("Hello", user)

Call

Calls a WIL batch file as a subroutine in applications that have that capability.

Syntax:

Call (filename.wbt, parameters)

Parameters:

"filename.wbt" = the WBT file you are calling. The WBT extension is required.

"parameters" = the parameters to pass to the file, if any, in the form "p1 p2 p3... pn".

Returns:

(integer) always @FALSE.

This function is used to pass control temporarily to a secondary WBT file. The main WBT file can
optionally pass parameters to the secondary WBT file. All variables are common (global) between the
calling and the called WBT files, so that the secondary WBT file may modify or create variables. The
secondary WBT file should end with a Return statement, to pass control back to the main WBT file.

If a string of parameters is passed to the secondary WBT file, it will automatically be parsed into individual
variables with the names param1, param2, etc., (maximum of nine parameters). The variable param0
will be a count of the total number of parameters in the string.

Example:

; MAIN.WBT

name = AskLine("", "What is your name?", "")

age = AskLine("", "How old are you?", "")

valid = @NO

Call("chek-age.wbt", age)

If valid == @NO Then Message("", "Invalid age")

; CHEK-AGE.WBT

userage = param1

really = AskYesNo("", "%name%, are you really %userage%?")

If really == @NO Then Return

If (userage > 0) && (userage < 150) Then valid = @YES

Return

See Also:

ParseData, Return

Char2Num

Converts the first character of a string to its numeric equivalent.

Syntax:

Char2Num (string)

Parameters:

"string" = any text string. Only the first character will be converted.

Returns:

(integer) ANSI character code.

This function returns the 8-bit ANSI code corresponding to the first character of the string parameter.

Note: For the commonly-used characters (with codes below 128), ANSI and ASCII characters are
identical.

Example:

; Show the hex equivalent of entered character

inpchar = AskLine("ANSI Equivalents", "Char:", "")

ansi = StrSub(inpchar, 1, 1)

ansiequiv = Char2Num(InpChar)

Message("ANSI Codes", "%ansi% => %ansiequiv%")

See Also:

Num2Char

ClipAppend

Appends a string to the Clipboard.

Syntax:

ClipAppend (string)

Parameters:

"string" = text string to add to Clipboard.

Returns:

(integer) @TRUE if string was appended;

@FALSE if Clipboard ran out of memory.

Use this function to append a string to the Windows Clipboard. The Clipboard must either contain text
data or be empty for this function to succeed.

Example:

; The code below will append 2 copies of the

; Clipboard contents back to the Clipboard, resulting

; in 3 copies of the original contents with a CR/LF

; between each copy.

a = ClipGet()

crlf = StrCat(Num2Char(13), Num2Char(10))

ClipAppend(crlf)

ClipAppend(a)

ClipAppend(crlf)

ClipAppend(a)

See Also:

ClipGet, ClipPut

ClipGet

Returns the contents of the Clipboard.

Syntax:

ClipGet ()

Parameters:

(none)

Returns:

(string) clipboard contents.

Use this function to copy text from the Windows Clipboard into a string variable.

Note: If the Clipboard contains an excessively large string a (fatal) out of memory error may occur.

Example:

; The code below will convert Clipboard contents to

; uppercase

ClipPut(StrUpper(ClipGet()))

a = ClipGet()

Message("UPPERCASE Clipboard Contents", a)

See Also:

ClipAppend, ClipPut

ClipPut

Copies a string to the clipboard.

Syntax:

ClipPut (string)

Parameters:

"string" = any text string.

Returns:

(integer) @TRUE if string was copied;

@FALSE if clipboard ran out of memory.

Use this function to copy a string to the Windows Clipboard. The previous Clipboard contents will be
lost.

Example:

; The code below will convert Clipboard contents to

; lowercase

ClipPut(StrLower(ClipGet()))

a = ClipGet()

Message("lowercase Clipboard Contents", a)

See Also:

ClipAppend, ClipGet

CurrentFile (Special Menu Function: See Note)

Returns the selected file name.

Syntax:

CurrentFile()

Returns:

(string) currently-selected file name.

When a WIL menu shell (a Windows program that makes its own distinctive use of the WIL Language.
Currently, the programs Command Post and File Commander fit this description.) displays the files in the
current directory, one of them may be "selected." This function returns the name of that file, if any.

This is different than a "highlighted" file. When a file is highlighted, it shows up in inverse video (usually
white-on-black). To find the filenames that are highlighted, see FileItemize.

Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.

Example:

;Ask which program to run (default = current file)

TheFile = AskLine ("Run It","Program:", CurrentFile())

Run (TheFile,"")

See Also:

FileItemize, DirGet, DirItemize

DateTime

Provides the current Date and time.

Syntax:

DateTime ()

Parameters:

(none)

Returns:

(string) today's date and time

This function will return the current date and time in a pre-formatted string. The format it is returned in
depends on how it is set up in the international section of the WIN.INI file:

ddd mm:dd:yy hh:mm:ss XX

ddd dd:mm:yy hh:mm:ss XX

ddd yy:mm:dd hh:mm:ss XX

Where:

ddd is day of the week (e.g. Mon)

mm is the month (e.g. 10)

dd is the day of the month (e.g. 23)

yy is the year (e.g. 90)

hh is the hours

mm is the minutes

ss is the seconds

XX is the Day/Night code (e.g. AM or PM)

Note: Windows provides even more formatting options than this.

The WIN.INI file will be examined to determine which format to use. You can adjust the WIN.INI file via
the International section of Control Panel if the format isn't what you prefer.

Example:

; assuming the current standard is U.S.

; (i.e. day dd/mm/yy hh:mm:ss AM)

Message("Current Date & Time", DateTime())

would produce a dialog box with a title of "Current Date & Time" and a message of "Sat 2/29/92 2:53:18
PM". The dialog includes an OK button the user can use to cancel the dialog.

See Also:

FileTimeGet

DDEExecute

Sends commands to a DDE server application.

Syntax:

DDEExecute (channel, command string)

Parameters:

(i) channel same integer that was returned by DDEInitiate.

(s) command string one or more commands to be executed by the server application.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

Use the DDEInitiate function to obtain a channel number.

In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("wincheck", "TUT")

If channel == 0 Then Goto failed

result = DDEExecute(channel, '[WriteCheck:p="Shorewood Apartments",t=580.00,l="Rent"]')

DDETerminate(channel)

WinClose("WinCheck")

If result == @FALSE Then Goto Failed

Message("DDE Execute", "Operation complete")

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:

DDEInitiate, DDEPoke, DDERequest, DDETerminate, DDETimeout

DDEInitiate

Opens a DDE channel.

Syntax:

DDEInitiate (app name, topic name)

Parameters:

(s) app name name of the application (without the E extension).

(s) topic name name of the topic you wish to access.

Returns:

(i) communications channel.

This function opens a DDE communications channel with a server application. The communications
channel can be subsequently used by the DDEExecute, DDEPoke, and DDERequest functions. You
should close this channel with DDETerminate when you are finished using it. If the communications
channel cannot be opened as requested, DDEInitiate returns a channel number of 0.

You can call DDEInitiate more than once, in order to carry on multiple DDE conversations (with multiple
applications) simultaneously.

In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:

DDEExecute, DDEPoke, DDERequest, DDETerminate, DDETimeout

DDEPoke

Sends data to a DDE server application.

Syntax:

DDEPoke (channel, item name, item value)

Parameters:

(i) channel same integer that was returned by DDEInitiate.

(s) item name identifies the type of data being sent.

(s) item value actual data to be sent to the server.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

Use the DDEInitiate function to obtain a channel number.

In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:

Run("reminder.exe", "")

channel = DDEInitiate("Reminder", "items")

If channel == 0 Then Goto failed

result = DDEPoke(channel, "all", "11/3/92 Misc Remember to vote")

DDETerminate(channel)

WinClose("Reminder")

If result == @FALSE Then Goto Failed

Message("DDE Poke", "Operation complete")

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:

DDEExecute, DDEInitiate, DDERequest, DDETerminate, DDETimeout

DDERequest

Gets data from a DDE server application.

Syntax:

DDERequest (channel, item name)

Parameters:

(i) channel same integer that was returned by DDEInitiate.

(s) item name identifies the data to be returned by the server.

Returns:

(s) information returned from the server.

Use the DDEInitiate function to obtain a channel number.

In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:

DDEExecute, DDEInitiate, DDEPoke, DDETerminate, DDETimeout

DDETerminate

Closes a DDE channel.

Syntax:

DDETerminate (channel)

Parameters:

(i) channel same integer that was returned by DDEInitiate.

Returns:

(i) always 1.

This function closes a communications channel that was opened with DDEInitiate.

Example:

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:

DDEExecute, DDEInitiate, DDEPoke, DDERequest, DDETimeout

DDETimeout

Sets the DDE timeout value.

Syntax:

DDETimeout (value)

Parameters:

(i) value DDE timeout time.

Returns:

(i) previous timeout value.

Sets the timeout time for subsequent DDE functions to specified value in milliseconds (1/1000 second).
Default is 3000 milliseconds (3 seconds). If the time elapses with no response, the WIL Interpreter will
return an error. The value set with DDETimeout stays in effect until changed by another DDETimeout
statement or until the WIL program ends, whichever comes first.

Example:

DDETimeout(5000)

Run("wincheck.exe", "TUT")

channel = DDEInitiate("WinCheck", "TUT")

If channel == 0 Then Goto failed

output = DDERequest(channel, "GetChecking")

DDETerminate(channel)

WinClose("WinCheck")

If output == "" Then Goto Failed

Message("Account balance", output)

Exit

:failed

Message("DDE operation unsuccessful", "Check your syntax")

See Also:

DDEExecute, DDEInitiate, DDEPoke, DDERequest, DDETerminate

Debug

Controls the debug mode.

Syntax:

Debug (mode)

Parameters:

mode = @ON or @OFF

Returns:

(integer) previous debug mode

Use this function to turn the debug mode on or off. The default is @OFF.

When debug mode is on, the interpreter will display the statement just executed, its result (if any), any
error conditions, and the next statement to execute.

The statements are displayed in a special dialog box. As you can see in the Example section following,
the dialog box gives the user four options: Next, Run, Cancel and Show Var.

Next executes the next statement and remains in debug mode.

Run exits debug mode and runs the rest of the program normally.

Cancel terminates the current batch file.

Show Var displays the contents of a variable whose name the user entered in the edit box.

Example:

Debug(@ON)

a = 6

q = AskYesNo("Testing Debug Mode", "Is the Pope Catholic")

Debug(@OFF)

b = a + 4

produces:

... then, if the user presses Next:

... and presses Next again:

... and then presses Yes:

etc. (If the user had pressed No it would have said "VALUE=>0".)

See Also:

ErrorMode, LastError

Delay

Pauses execution for a specified amount of time.

Syntax:

Delay (seconds)

Parameters:

seconds = integer seconds to delay (2 - 15)

Returns:

(integer) always @TRUE

This function causes the currently-executing batch file to be suspended for the specified period of time.
Seconds must be an integer between 2 and 15. Smaller or larger numbers will be adjusted accordingly.

Example:

Message("Wait", "About 15 seconds")

Delay(15)

Message("Hi", "I'm Baaaaaaack")

See Also:

Yield

Dialog

Displays a custom dialog box. The WIL Language dialog editor makes dialog creation automatic. This is
an accessory furnished to registered users of WIL Language products. You will not need the dialog editor
to create your custom dialogs, the instructions here are sufficient. Even if you are using the editor to
define your dialogs, you may find here the quick instructions you need to make small changes.

Syntax:

Dialog (dialog-name)

Parameters:

(s) dialog-name name of the dialog box.

Returns:

(i) value of the pushbutton used to close the dialog box.

The text which follows describes how to define a dialog box for use by the Dialog function. Please refer
to your product-specific documentation for any additional information which may supplement or
supersede that which is described here.

Before the Dialog function is called, you must include a section of code in your WIL program which will
define the characteristics of the dialog box to be displayed. First of all, the dialog must be declared, and
a name must be assigned to it. This is done with a line of the following format:

<name>Format="WWWDLGED,4.0"

where <name> is the dialog name. This should follow the standard rules for WIL variable names, and
may not exceed 17 characters in length.

Next, the format of the dialog box is defined, as follows:

<name>X=<x-origin>
<name>Y=<y-origin>
<name>Width=<box-width>
<name>Height=<box-height>
<name>NumControls=<control-count>
<name>Caption="<box-caption>"

where:

<name> is the name of the dialog box, as described above.

<x-origin> is the horizontal coordinate of the upper left corner of dialog box.

<y-origin> is the vertical coordinate of the upper left corner of the dialog box.

<box-width> is the width of the dialog box.

<box-height> is the height of the dialog box.

<control-count> is the total number of controls in the dialog box (see below).

<box-caption> is the text which will appear in the title bar of the dialog box.

Finally, you will need to define the objects, or controls, which will appear inside the dialog box. Each
control is defined with a line of the following format:

<name>nn=`x,y,width,height,type,var,"text",value`

where:

"nn" is the ordinal position of the control in the dialog box (starting with 1).

"<name>" is the name of the dialog box, as described above.

"x" is the horizontal coordinate of the upper left corner of the control.

"y" is the vertical coordinate of the upper left corner of the control.

"width" is the width of the control.

"height" is the height of the control.

[This should be DEFAULT for all controls except filelistboxes.]

"type" is the type of control, (see below).

"var" is the name of the variable affected by the control.

"text" is the description which will be displayed with the control.

[Use a null string ("") if the control should appear blank.]

"value" is the value returned by the control.

[Use only for pushbuttons, radiobuttons, and checkboxes.]

Note: The numbers used for "x-origin", "y-origin", "box-width", "box-height", "x", "y", "width," and "height"
are expressed in a unit of measure known as "Dialog Units." Basically speaking:

1 width unit = 1/4 width of system font.

1 height unit = 1/4 width of system font.

4 units wide = Average width of the system font.

8 units high = Average height of the system font.

There are seven types of controls available:

PUSHBUTTON

A button, which can be labeled and used as desired.

When the user presses a pushbutton, the Dialog function will exit and will return the "value"
assigned to the button which was pressed. Therefore, you should assign a unique "value" to each
pushbutton in a dialog.

Pushbuttons with values of 0 and 1 have special meaning. If the user presses a pushbutton which
has a value of 0, the WIL program will be terminated (or will go to the label marked
":CANCEL", if one is defined); this corresponds to the behavior of the familiar Cancel button. A
pushbutton with a value of 1 is the default pushbutton, and will be selected if the user presses the
Enter key; this corresponds to the behavior of the familiar OK button.

Note: Every dialog box must contain at least one pushbutton.

For pushbuttons, "var" should be DEFAULT.

RADIOBUTTON

One of a group of circular buttons, only one of which can be "pressed" (filled in) at any given time.
You can have more than one group of radio buttons in a dialog box, but each group must use a
different "var". When the Dialog function exits, the value of "var" will be equal to the "value"
assigned to the radiobutton which is pressed. Therefore, you should assign a unique "value" to
each radiobutton in a group.

Normally, when a dialog box opens, the default radiobutton in each group (i.e., the one which is
pressed) is the one which has a value of 1. You can change this by assigning a different value to
"var" before calling the Dialog function.

CHECKBOX

A square box, in which an "X" appears when selected. A check box can have a value of 0 (un-
checked) or 1 (checked).

Each checkbox in a dialog should use a unique "var".

Normally, when a dialog box opens, every checkbox defaults to being un-checked. You can change
this by assigning a value of 1 to "var" before calling the Dialog function.

Note for advanced users only:

 it is possible to define a group of checkboxes which have the same "var". Each box in the group
must have a unique value, which must be a power of 2 (1, 2, 4, etc.). The user can check and
uncheck individual checkboxes in the group, and when the Dialog function exits the value of "var"
will be equal to the values of all the checkboxes in the group, combined using the bitwise OR
operator (|).

EDITBOX

A box in which text can be typed. Whatever the user types in the editbox will be assigned to the
variable "var".

Normally, when a dialog box opens, editboxes are empty. You can change this by assigning a value
to the string variable "var" before calling the Dialog function, in which case the value of "var" will be
displayed in the editbox.

STATICTEXT

Descriptive text, which does not change. This can be used to display titles, instructions, etc.

For statictext controls, "var" should be DEFAULT.

VARYTEXT

Variable text. The current value of "var" is displayed. If "var" is not assigned a value in the WIL
program before calling the Dialog function, the "text" field of the control definition will be used.

FILELISTBOX

A file selection listbox. This will allow the user to select a file from any directory or drive on the
system.

The value of "var" will be set to the selected filename; if you need to know what directory the file is
in, use the DirGet function after the Dialog function exits.

Normally, when a dialog box opens, filelistboxes display files matching a filemask of "*.*" (i.e., all

files). You can change this by assigning a different filemask value to the string variable"var" before
calling the Dialog function.

In combination with the filelistbox, you can include an EDITBOX control which has the same "var"
name as the filelistbox. If you do, the user can type a filemask into the editbox (eg., "*.TXT"), which
will cause the filelistbox to be redrawn to display only those files which match the specified filemask.

Also in combination with the filelistbox, you can include a VARYTEXT control which has the same
"var" name as the filelistbox. If you do, this control will show the name of the directory currently
displayed in the filelistbox.

For filelistboxes, "text" should be DEFAULT.

Note: You can have only one filelistbox in a dialog.

Example:

GeorgeFormat=`WWWDLGED,4.0`

GeorgeCaption=`Sample Dialog`
GeorgeX=56
GeorgeY=72
GeorgeWidth=228
GeorgeHeight=113
GeorgeNumControls=12

George01=`20,88,64,DEFAULT,PUSHBUTTON,DEFAULT,"&Ok",1`
George02=`140,88,64,DEFAULT,PUSHBUTTON,DEFAULT,"&Cancel",0`
George03=`8,6,98,DEFAULT,STATICTEXT,DEFAULT,"Please enter your name:"`
George04=`108,6,94,DEFAULT,EDITBOX,UserName,"<Enter your name here>"`
George05=`8,24,108,DEFAULT,STATICTEXT,DEFAULT,"Choose preferred environment:"`
George06=`18,38,64,DEFAULT,RADIOBUTTON,Rad,"DOS",1`
George07=`18,50,64,DEFAULT,RADIOBUTTON,Rad,"Windows",2`
George08=`18,62,64,DEFAULT,RADIOBUTTON,Rad,"OS/2",3`
George09=`130,24,88,DEFAULT,STATICTEXT,DEFAULT,"Check ones you use:"`
George10=`144,38,64,DEFAULT,CHECKBOX,CHKDOS,"DOS",1`
George11=`144,50,64,DEFAULT,CHECKBOX,CHKWIN,"Windows",1`
George12=`144,62,64,DEFAULT,CHECKBOX,CHKOS2,"OS/2",1`

Dialog("George")

See Also:

AskLine, AskPassword, AskYesNo, DialogBox, ItemSelect

DialogBox

Pops up a Windows dialog box defined by the WBD template file. The WIL Language includes a dialog
editor that automates the production of dialogs.

Note: This function has been entirely supplanted by the Dialog function, but is retained in the WIL
language and documented here for backwards compatibility.

Syntax:

DialogBox ("title", "WDG file")

Parameters:

"title" = the title of the dialog box.

"WDG file" = the name of the WDG template file.

Returns:

(integer) always 0

Each element in the template file is enclosed in square brackets, and consists of a variable name,
followed by one of the following symbols:

Symbol Meaning Example

+ check box [backup+1Save backup]

edit box [newfile#]

\ file selection listbox [editfile\]

^ radio button [prog^1Note] [prog^2Write]

$ variable [var$]

The number following the check box and radio button symbols is the value which will get assigned to the
variable if its corresponding box is checked, or button is selected. Following the number is the
descriptive text which will appear next to the box or button.

When used in conjunction with a file selection list box variable with the same name, two of these symbols
have special meanings:

file mask edit box [editfile#]

$ directory variable [editfile$]

Anything not appearing within square brackets is displayed as text.

[editfile$]

File mask [editfile#]

[editfile\]

[editfile\]

[editfile\]

[editfile\]

[editfile\]

[backup+1Save backup of file]

[prog^1Notepad] [prog^2WinEdit]

See Also: Dialog

DirChange

Changes the current directory. Can also log a new drive.

Syntax:

DirChange ([d:]path)

Parameters:

"[d:]" = an optional disk drive to log onto.

"path" = the desired path.

Returns:

(integer) @TRUE if directory was changed;

@FALSE if the path could not be found.

Use this function to change the current working directory to another directory, either on the same or a
different disk drive.

Example:

DirChange("c:\")

TextBox("This is your CONFIG.SYS file", "config.sys")

See Also:

DirGet, DirHome, LogDisk

DirGet

Gets the current working directory.

Syntax:

DirGet ()

Parameters:

(none)

Returns:

(string) = current working directory.

Use this function to determine which directory we are currently in. It's especially useful when changing
drives or directories temporarily.

Example:

; Get, then restore current working directory

origdir = DirGet()

DirChange("c:\")

FileCopy("config.sys", "%origdir%xxxtemp.xyz", @FALSE)

DirChange(origdir)

See Also:

DirHome

DirHome

Returns directory containing the WinBatch executable files.

Syntax:

DirHome ()

Parameters:

(none)

Returns:

(string) pathname of the home directory.

Use this function to determine the location of WINBATCH.EXE.

Example:

a = DirHome()

Message("WinBatch Executable is in ", a)

See Also:

DirGet, DirWindows

DirItemize

Returns a space-delimited list of directories.

Syntax:

DirItemize (dir-list)

Parameters:

"dir-list" = a string containing a set of subdirectory names, which may be wildcarded.

Returns:

(string) list of directories.

This function compiles a list of subdirectories and separates the names with spaces.

This is especially useful in conjunction with the ItemSelect function, which enables the user to choose an
item from such a space-delimited list.

DirItemize("*.*") returns all dirs

Example:

a = DirItemize("*")

ItemSelect("Directories", a, " ")

See Also:

CurrentFile,FileItemize, ItemSelect,TextSelect,WinItemize,

DirMake

Creates a new directory.

Syntax:

DirMake ([d:]path)

Parameters:

"[d:]" = the desired disk drive.

"path" = the path to create.

Returns:

(integer) @TRUE if the directory was successfully created;

@FALSE if it wasn't.

Use this function to create a new directory.

Example:

DirMake("c:\xxxstuff")

See Also:

DirRemove, DirRename

DirRemove

Removes a directory.

Syntax:

DirRemove (dir-list)

Parameters:

"dir-list" = a space-delimited list of directory pathnames.

Returns:

(integer) @TRUE if the directory was successfully removed;

@FALSE if it wasn't.

Use this function to delete directories. You can delete one or more at a time by separating directory
names with spaces. You cannot, however, use wildcards.

Example:

DirRemove("c:\xxxstuff")

DirRemove("tempdir1 tempdir2 tempdir3")

See Also:

DirMake, DirRename

DirRename

Renames a directory.

Syntax:

DirRename ([d:]oldpath, [d:]newpath)

Parameters:

"oldpath" = existing directory name, with optional drive.

"newpath" = new name for directory.

Returns:

(integer) @TRUE if the directory was successfully renamed;

@FALSE if it wasn't.

DirRename("c:\temp", "c:\work")

See Also:

DirMake, DirRemove

DirWindows

Returns the name of the Windows or Windows System directory.

Syntax:

DirWindows (request#)

Parameters:

(i) request# see below.

Returns:

(s) directory name.

This function returns the name of either the Windows directory or the Windows System directory,
depending on the request# specified.

Req# Return value

0 Windows directory

1 Windows System directory

Example:

DirChange(DirWindows(0))

ini = ItemSelect("Select file to edit", FileItemize("*.ini"), " ")

Run("notepad.exe, ini)

See Also:

DirGet,DirHome

DiskFree

Finds the total space available on a group of drives.

Syntax:

DiskFree (drive-list)

Parameters:

"drive-list" = at least one drive letter, separated by spaces.

Returns:

(integer) the number of bytes available on all the specified drives.

This function takes a string consisting of drive letters, separated by spaces. Only the first character of
each non-blank group of characters is used to determine the drives, so you can use just the drive letters,
or add a colon (:), or add a backslash (\), or even a whole pathname, and still get a perfectly valid result.

Example:

size = DiskFree("c d")

Message("Space Available on C: & D:", size)

See Also:

DiskScan,FileSize

DiskScan

Returns list of drives.

Syntax:

DiskScan (request#)

Parameters:

(i) request# see below.

Returns:

(s) drive list.

Scans disk drives on the system, and returns a space-delimited list of drives of the type specified by
request#, in the form "A: B: C: D: ".

The request# is a bitmask, so adding the values together (except for 0) returns all drive types specified;
eg., a request# of 3 returns floppy plus local hard drives.

Req# Return value

0 List of unused disk IDs

1 List of floppy drives

2 List of local hard drives

4 List of remote (network) drives

Example:

hd = DiskScan(2)

Message("Hard drives on system", hd)

See Also:

DiskFree, LogDisk

Display

Displays a message to the user for a specified period of time.

Syntax:

Display (seconds, title, text)

Parameters:

seconds = integer seconds to display the message (1-15).

"title" = title of the window to be displayed.

"text" = text of the window to be displayed.

Returns:

(integer) always @TRUE.

Use this function to display a message for a few seconds, and then continue processing without user
input.

Seconds must be an integer between 1 and 15. Smaller or larger numbers will be adjusted accordingly.

The display box may be prematurely canceled by the user by clicking a mouse button, or hitting any key.

Example:

Display(3, "Current window is", WinGetActive())

See Also:

Pause, Message

DOSVersion

Returns the version numbers of the current version of DOS.

Syntax:

DOSVersion (level)

Parameters:

level = @MAJOR or @MINOR.

Returns:

(integer) integer or decimal part of DOS version number.

@MAJOR returns the integer part (to the left of the decimal).

@MINOR returns the decimal part (to the right of the decimal).

If the version of DOS in use is 4.0, then:

DOSVersion(@MAJOR) == 4

DOSVersion(@MINOR) == 0

Example:

i = DOSVersion(@MAJOR)

d = DOSVersion(@MINOR)

If StrLen(d) == 1 Then d = StrCat("0", d)

Message("DOS Version", "%i%.%d%")

See Also:

Environment, Version, WinVersion

Drop

Removes variables from memory.

Syntax:

Drop (var, [var]...)

Parameters:

var = variable names to remove.

Returns:

(integer) always @TRUE.

This function removes variables from the language processor's variable list, and recovers the memory
associated with the variable (and possibly related string storage).

Example:

a = "A variable"

b = "Another one"

Drop(a, b) ; This removes A and B from memory

Else

Continues a previous If statement.

Syntax:

Else statement

Parameters:

(s) statement any valid WIL function or command.

This command continues the last-encountered If command. It allows the user to specify an alternate
action to be taken if the If condition was false. If the previous If condition was false, the statement
following the Else keyword is executed. If the previous If condition was true, the statement following the
Else keyword is ignored.

Example:

windir = DirWindows(0)
inifiles = FileItemize("%windir%*.ini")
ini = ItemSelect("INI file to edit", inifiles, " ")
If ini == "" Then Exit
Else Run("notepad.exe", ini)

See Also:

Goto, If ... Then, Then

EndSession

Ends the Windows session.

Syntax:

EndSession ()

Parameters:

(none)

Returns:

(integer) always 0.

Use this command to end the Windows session. This command is equivalent to closing the Program
Manager window.

Example:

sure = AskYesNo ("End Session", "You SURE you want to exit Windows?")

If sure == @No Then Goto cancel

EndSession()

:cancel

Message("", "Exit Windows canceled")

See Also:

Exit, WinClose, WinCloseNot

Environment

Gets a DOS environment variable.

Syntax:

Environment (env-variable)

Parameters:

"env-variable" = any defined environment variable.

Returns:

(string) environment variable contents.

Use this function to query the DOS environment.

Note: It is not possible to change a DOS environment variable from within Windows.

Example:

; Display the PATH for this DOS session

currpath = Environment("PATH")

Message("Current DOS Path", currpath)

See Also:

IniRead, Version, WinVersion,WinMetrics, WinParmGet

ErrorMode

Specifies how to handle errors.

Syntax:

ErrorMode (mode)

Parameters:

mode = @CANCEL or @NOTIFY or @OFF.

Returns:

(integer) previous error setting.

Use this function to control the effects of runtime errors. The default is @CANCEL, meaning the
execution of the batch file will be canceled for any error.

@CANCEL: All runtime errors will cause execution to be canceled. The user will be notified which error
occurred.

@NOTIFY: All runtime errors will be reported to the user, and the user can choose to continue if it isn't
fatal.

@OFF: Minor runtime errors will be suppressed. Moderate and fatal errors will be reported to the user.
User has the option of continuing if the error is not fatal.

In general, we suggest the normal state of the program should be ErrorMode(@CANCEL), especially if
you are writing a batch file for others to use. You can always suppress errors you expect will occur and
then re-enable ErrorMode (@CANCEL).

Example:

; Delete xxxtest.xyz. If file doesn't exist,

; continue execution; don't stop

prevmode = ErrorMode(@OFF)

FileDelete("c:\xxxtest.xyz")

ErrorMode(prevmode)

See Also:

Debug, LastError, Execute, Error List

Exclusive

Controls whether or not other Windows programs will get any time to execute.

Syntax:

Exclusive (mode)

Parameters:

mode = @ON or @OFF.

Returns:

(integer) previous Exclusive mode.

Exclusive(@OFF) is the default mode. In this mode,the interpreter is well-behaved toward other
Windows applications.

Exclusive(@ON) allows WIL files to run somewhat faster, but causes the interpreter to be "greedier"
about sharing processing time with other active Windows applications. For the most part, this mode is
useful only when you have a series of WIL statements which must be executed in quick succession.

Example:

Exclusive(@ON)

x = 0

start = DateTime()

:add

x = x + 1

If x < 1000 Then Goto add

stop = DateTime()

crlf = StrCat(Num2Char(13), Num2Char(10))

Message("Times", "Start: %start%%crlf%Stop: %stop%")

Exclusive(@OFF)

Execute

Executes a statement in a protected environment. Any errors encountered are recoverable.

Syntax:

Execute statement

Parameters:

"statement" = is (hopefully) an executable statement.

Use this command to execute computed or user-entered statements. Due to the built-in error recovery
associated with Execute, it is ideal for interactive execution of user-entered commands.

Note that the Execute command doesn't operate on a string, per se, but rather on a direct statement. If
you want to put a code segment into a string variable, you must use the substitution feature of the
language, as in the example below.

Example:

cmd = ""

cmd = AskLine("WIL Interactive", "Command:", cmd)

Execute %cmd%

Exit

Terminates the batch file being interpreted.

Syntax:

Exit

Use this command to prematurely exit a batch file process. An exit is implied at the end of each batch
file.

Example:

a = 100

Message("The value of a is", a)

Exit

See Also:

Pause

FileAppend

Appends one or more files to another file.

Syntax:

FileAppend (source-list, destination)

Parameters:

"source-list" = a string containing one or more filenames, which may be wildcarded.

"destination" = target file name.

Returns:

(integer) @TRUE if all files were appended successfully;

@FALSE if at least one file wasn't appended.

Use this function to append an individual file or a group of files to the end of an existing file. If
"destination" does not exist, it will be created.

The file(s) specified in "source-list" will not be modified by this function.

"Source-list" may contain * and ? wildcards. "Destination" may not contain wildcards of any type; it must
be a single file name.

Example:

FileAppend("c:\config.sys", "c:\misc\config.sav")

DirChange("c:\batch")

FileDelete("allbats.fil")

FileAppend("*.bat", "allbats.fil")

See Also:

FileCopy, FileDelete, FileExist

FileAttrGet

Returns file attributes.

Syntax:

FileAttrGet (filename)

Parameters:

(s) filename file whose attributes you want to determine.

Returns:

(s) attribute settings.

Returns attributes for the specified file, in a string of the form "RASH". This string is composed of four
individual attribute characters, as follows:

Char Symbol Meaning

1 R Read-only ON

2 A Archive ON

3 S System ON

4 H Hidden ON

A hyphen in any of these positions indicates that the specified attribute is OFF. For example, the string "-
A-H" indicates a file which has the Archive and Hidden attributes set.

Example:

editfile = "c:\config.sys"

attr = FileAttrGet(editfile)

If StrSub(attr, 1, 1) == "R" Then Goto readonly

Run("notepad.exe", editfile)

Exit

:readonly

Message("File is read-only", "Cannot edit %editfile%")

See Also:

FileAttrSet, FileTimeGet

FileAttrSet

Sets file attributes.

Syntax:

FileAttrSet (file-list, settings)

Parameters:

(s) file-list space-delimited list of files.

(s) settings new attribute settings for those file(s).

Returns:

(i) always 0.

The attribute string consists of one or more of the following characters (an upper case letter turns the
specified attribute ON, a lower case letter turns it OFF):

R read only ON

A archive ON

S system ON

H hidden ON

r read only OFF

a archive OFF

s system OFF

h hidden OFF

Example:

FileAttrSet("win.ini system.ini", "rAsH")

FileAttrSet("c:\command.com", "R")

See Also:

FileAttrGet, FileTimeTouch

FileClose

Closes a file.

Syntax:

FileClose (filehandle)

Parameters:

filehandle = same integer that was returned by FileOpen.

Returns:

(integer) always 0.

Example:

; the hard way to copy an ASCII file

old = FileOpen("config.sys", "READ")

new = FileOpen("sample.txt", "WRITE")

:top

x = FileRead(old)

If x != "*EOF*" Then FileWrite(new, x)

If x != "*EOF*" Then Goto top

FileClose(new)

FileClose(old)

See Also:

FileOpen, FileRead, FileWrite

FileCopy

Copies files.

Syntax:

FileCopy (source-list, destination, warning)

Parameters:

"source-list" = a string containing one or more filenames, which may be wildcarded.

"destination" = target file name.

warning = @TRUE if you want a warning before

overwriting existing files;

@FALSE if no warning desired.

Returns:

(integer) @TRUE if all files were copied successfully;

@FALSE if at least one file wasn't copied.

Use this function to copy an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.

You can also copy files to any COM or LPT device.

"Source-list" may contain * and ? wildcards. "Destination" may contain the * wildcard only.

Example:

FileCopy("c:\config.sys", "d:", @FALSE)

FileCopy("c:*.sys", "d:devices*.sys", @TRUE)

FileCopy("c:\config.sys", "LPT1", @FALSE)

See Also:

FileDelete, FileExist, FileLocate, FileMove, FileRename

FileDelete

Deletes files.

Syntax:

FileDelete (file-list)

Parameters:

"file-list" = a string containing one or more filenames, which may be wildcarded.

Returns:

(integer) @TRUE if all the files were deleted;

@FALSE if a file didn't exist or is marked with the READ-ONLY attribute.

Use this function to delete an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.

Example:

FileDelete("*.bak temp???.fil")

See Also:

FileExist, FileLocate, FileMove, FileRename

FileExist

Tests for the existence of files.

Syntax:

FileExist (filename)

Parameters:

"filename" = either a fully qualified filename with drive and path, or just a filename and extension.

Returns:

(integer) @TRUE if the file exists;

@FALSE if it doesn't or if the pathname is invalid.

This function is used to test whether or not a specified file exists.

If a fully-qualified file name is used, only the specified drive and directory will be checked for the desired
file. If only the root and extension are specified, then first the current directory is checked for the file, and
then, if the file is not found in the current directory, all directories in the DOS path are searched.

Example:

; check for file in current directory

fex = FileExist(StrCat(DirGet(), "myfile.txt"))

tex = StrSub("NOT", 1, StrLen("NOT") * fex)

Message("MyFile.Txt"," Is %tex%in the current directory")

; check for file someplace along path

fex = FileExist("myfile.txt")

tex = StrSub("NOT", 1, StrLen("NOT") * fex)

Message("MyFile.Txt", " Is %tex% in the DOS path")

See Also:

FileLocate

FileExtension

Returns extension of file.

Syntax:

FileExtension (filename)

Parameters:

"filename" = [optional path]complete file name, with extension.

Returns:

(string) file extension.

FileExtension parses the passed filename and returns the extension part of the filename.

Example:

; prevent the user from editing a COM or E file

allfiles = FileItemize("*.*")

editfile = ItemSelect("Select file to edit", allfiles, " ")

ext = FileExtension(editfile)

If (ext == "com") || (ext == "exe") Then Goto noedit

Run("notepad.exe", editfile)

exit

:noedit

Message ("Sorry", "You may not edit a program file")

See Also:

FileRoot, FilePath

FileItemize

Returns a space-delimited list of files.

Syntax:

FileItemize (file-list)

Parameters:

"file-list" = a string containing a list of filenames, which may be wildcarded.

Returns:

(string) space-delimited list of files.

This function compiles a list of filenames and separates the names with spaces.

This is especially useful in conjunction with the ItemSelect function, which lets the user choose an item
from such a space-delimited list.

Example:

FileItemize("*.bak") ;all BAK files

FileItemize("*.arc *.zip *.lzh") ;compressed files

; Get which.INI file to edit

ifiles = FileItemize("c:\windows*.ini")

ifile = ItemSelect(".INI Files", ifiles, " ")

RunZoom("notepad", ifile)

Drop(ifiles, ifile)

See Also:

DirItemize, WinItemize, ItemSelect

FileLocate

Finds file in current directory or along the DOS path.

Syntax:

FileLocate (filename)

Parameters:

"filename" = root name, ".", and extension.

Returns:

(string) fully-qualified path name.

This function is used to obtain the fully qualified path name of a file. The current directory is checked
first, and if the file is not found, the DOS path is searched. The first occurrence of the file is returned.

Example:

; Edit WIN.INI

winini = FileLocate("win.ini")

If winini == "" Then Goto notfound

Run("notepad.exe", winini)

Exit

:notfound

Message("???", "WIN.INI not found")

See Also:

FileExist

FileMove

Moves files.

Syntax:

FileMove (source-list, destination, warning)

Parameters:

"source-list" = one or more filenames separated by spaces.

"destination" = target filename.

warning = @TRUE if you want a warning before overwriting existing files;

@FALSE if no warning desired.

Returns:

(integer) @TRUE if the file was moved;

@FALSE if the source file was not found or had the READ-ONLY attribute, or the
target filename is invalid.

Use this function to move an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.

You can also move files to another drive, or to any COM or LPT device.

"Source-list" may contain * and ? wildcards. "Destination" may contain the * wildcard only.

Example:

FileMove("c:\config.sys", "d:", @FALSE)

FileMove("c:*.sys", "d:*.sys", @TRUE)

See Also:

FileCopy, FileDelete, FileExist, FileLocate, FileRename

FileOpen

Opens a STANDARD ASCII (only) file for reading or writing.

Syntax:

FileOpen (filename, open-type)

Parameters:

"filename" = name of the file to open.

open-type = READ or WRITE.

Returns:

(special integer)filehandle

The "filehandle" returned by the FileOpen function is subsequently used by the FileRead, FileWrite, and
FileClose functions.

Example:

; To open for reading:

FileOpen("stuff.txt", "READ")

; To open for writing:

FileOpen("stuff.txt", "WRITE")

See Also:

FileClose, FileRead, FileWrite

FilePath

Returns path of file.

Syntax:

FilePath (filename)

Parameters:

"filename" = fully qualified file name, including path.

Returns:

(string) fully qualified path name.

FilePath parses the passed filename and returns the drive and path of the file specification, if any.

Example:

coms = Environment("COMSPEC")

compath = FilePath(coms)

Message("", "Your command processor is located in the %compath% directory")

See Also:

FileRoot, FileExtension

FileRead

Reads data from a file.

Syntax:

FileRead (filehandle)

Parameters:

filehandle = same integer that was returned by FileOpen.

Returns:

(string) line of data read from file.

When the end of the file is reached, the string *EOF* will be returned.

Example:

handle = FileOpen("autoexec.bat", "READ")

:top

line = FileRead(handle)

Display(4, "AUTOEXEC DATA", line)

If line != "*EOF*" Then Goto top

FileClose(handle)

See Also:

FileOpen, FileClose, FileWrite

FileRename

Renames files.

Syntax:

FileRename (source-list, destination)

Parameters:

"source-list" = one or more filenames, separated by spaces.

"destination" = target filename.

Returns:

(integer) @TRUE if the file was renamed;

@FALSE if the source file was not found or had the READ-ONLY attribute, or the
target filename is invalid.

Use this function to rename an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.

Note: Unlike FileMove, you cannot make a file change its resident disk drive with FileRename.

"Source-list" may contain * and ? wildcards. "Destination" may contain the * wildcard only.

Example:

FileRename("c:\config.sys", "config.old")

FileRename("c:*.txt", "*.bak")

See Also:

FileCopy, FileExist, FileLocate, FileMove

FileRoot

Returns root of file.

Syntax:

FileRoot (filename)

Parameters:

"filename" = [optional path]complete file name, with extension.

Returns:

(string) file root.

FileRoot parses the passed filename and returns the root part of the filename.

Example:

allfiles = FileItemize("*.*")

editfile = ItemSelect("Select file to edit", allfiles, " ")

root = FileRoot(editfile)

ext = FileExtension(editfile)

lowerext = StrLower(ext)

nicefile = StrCat(root, ".", lowerext)

Message("", "You are about to edit %nicefile%.")

Run("notepad.exe", editfile)

See Also:

FileExtension, FilePath

FileSize

Finds the total size of a group of files.

Syntax:

FileSize (file-list)

Parameters:

"file-list" = zero or more filenames, separated by spaces.

Returns:

(integer) total bytes taken up by the specified files.

This function returns the total size of the specified files. Note that it doesn't handle wildcarded filenames.
You can, however, use FileItemize on a wildcarded filename and use the resulting string as a FileSize
parameter.

Example:

size = FileSize(FileItemize("*.*"))

Message("Size of All Files in Directory", size)

See Also:

DiskFree

FileTimeGet

Returns file date and time.

Syntax:

FileTimeGet (filename)

Parameters:

(s) filename name of file for which you want the date and time.

Returns:

(s) file date and time.

This function will return the date and time of a file, in a pre-formatted string. The format it is returned in
depends on the date format specified in the [International] section of the WIN.INI file:

ddd mm:dd:yy hh:mm:ss XX

ddd dd:mm:yy hh:mm:ss XX

ddd yy:mm:dd hh:mm:ss XX

Where:

ddd is day of the week (e.g. Mon)

mm is the month (e.g. 10)

dd is the day of the month (e.g. 23)

yy is the year (e.g. 90)

hh is the hours

mm is the minutes

ss is the seconds

XX is the Day/Night code (e.g. AM or PM)

The WIN.INI file will be examined to determine which format to use. You can adjust the WIN.INI file via
the International section of Control Panel if the format isn't what you prefer.

Example:

oldtime = FileTimeGet("win.ini")

Run("notepad.exe", "win.ini")

WinWaitClose("Notepad - WIN.INI")

newtime = FileTimeGet("win.ini")

If StrCmp(oldtime, newtime) == 0 Then Exit

Message("", "WIN.INI has been changed")

See Also:

FileAttrGet, FileTimeTouch

FileTimeTouch

Sets file(s) to current time.

Syntax:

FileTimeTouch (file-list)

Parameters:

(s) file-list a space-delimited list of files

Returns:

(i) always 0

"File-list" is a space-delimited list of files, which may not contain wildcards. The path is searched if the
file is not found in current directory and if the directory is not specified in "file-list".

Example:

FileTimeTouch("wac.c wac.rc")

Run("make.exe", "-fwac.mak")

See Also:

FileAttrSet, FileTimeGet

FileWrite

Writes data to a file.

Syntax:

FileWrite(filehandle, output-data)

Parameters:

filehandle = same integer that was returned by FileOpen.

"output-data" = data to write to file.

Returns:

(integer) always 0.

Example:

handle = FileOpen("stuff.txt", "WRITE")

FileWrite(handle, "Gobbledygook")

FileClose(handle)

See Also:

FileOpen, FileClose, FileRead

Goto

Changes the flow of control in a batch file.

Syntax:

Goto label

Parameters:

"label" = user-defined identifier.

Goto label causes an unconditional branch to the batch file line marked :label, where the identifier is
preceded by a colon (:).

Example:

If WinExist("Solitaire") == @FALSE Then Goto open

WinActivate("Solitaire")

Goto loaded

:open

Run("sol.exe", "")

:loaded

See Also:

If...Then

IconArrange

Rearranges icons.

Syntax:

IconArrange ()

Parameters:

(none)

Returns:

(i) always 0.

This function rearranges the icons at the bottom of the screen, spacing them evenly. It does not change
the order in which the icons appear.

Example:

IconArrange ()

See Also:

RunIcon, WinIconize, WinPlaceSet

If...Then

Conditionally performs a function.

Syntax:

If condition Then statement

Parameters:

"condition" = an expression to be evaluated.

"statement" = any valid WIL function or command.

If the condition following the If keyword is true, the statement following the Then keyword is executed. If
the condition following the If keyword is false, the statement following the Then keyword is ignored.

Example:

sure = AskYesNo("End Session", "Really quit Windows?")

If sure == @YES Then EndSession()

See Also:

Goto

IgnoreInput

Turns off hardware input to windows.

Syntax:

IgnoreInput(mode)

Parameters:

mode = @TRUE or @FALSE.

Returns:

(integer) previous IgnoreInput mode.

IgnoreInput causes mouse movements, clicks and keyboard entry to be completely ignored. Good for
self-running demos.

Warning: If you are not careful with the use of IgnoreInput, you can lock up your computer!

Example:

username = AskLine("Hello", "Please enter your name","")

IgnoreInput(@TRUE)

Call("demo.wbt", username)

IgnoreInput(@FALSE)

IniDelete

Removes a line or section from WIN.INI.

Syntax:

IniDelete (section, keyname)

Parameters:

(s) section the major heading under which the item is located.

(s) keyname the name of the item to delete.

Returns:

(i) always 0

This function will remove the specified line from the specified section in WIN.INI. You can remove an
entire section, instead of just a single line, by specifying a keyword of @WHOLESECTION. Case is not
significant in section or keyname.

Example:

IniDelete("Desktop", "Wallpaper")

IniDelete("Quicken",@WHOLESECTION)

See Also:

IniDeletePvt, IniItemize, IniRead, IniWrite

IniDeletePvt

Removes a line or section from a private INI file.

Syntax:

IniDeletePvt (section, keyname, filename)

Parameters:

(s) section the major heading under which the item is located.

(s) keyname the name of the item to delete.

(s) filename name of the INI file.

Returns:

(i) always 0.

This function will remove the specified line from the specified section in a private INI file. You can
remove an entire section, instead of just a single line, by specifying a keyword of @WHOLESECTION.
Case is not significant in section or keyname.

Example: text:

IniDeletePvt("Current Users", "Excel", "meter.ini")

See Also:

IniDelete, IniItemizePvt, IniReadPvt, IniWritePvt

IniItemize

Lists keywords or sections in WIN.INI.

Syntax:

IniItemize (section)

Parameters:

(s) section the major heading to itemize.

Returns:

(s) list of keywords or sections.

IniItemize will scan the specified section in WIN.INI, and return a space-delimited list of all keyword
names contained within that section. If a null string ("") is given as the section name, IniItemize will
return a list of all section names contained within WIN.INI. Case is not significant in section names.

Example:

; Returns all keywords in the [Extensions] section

keywords = IniItemize("Extensions")

; Returns all sections in the entire WIN.INI file

sections = IniItemize("")

See Also:

IniDelete, IniItemizePvt, IniRead, IniWrite

IniItemizePvt

Lists keywords or sections in a private INI file.

Syntax:

IniItemizePvt (section, filename)

Parameters:

(s) section the major heading to itemize.

(s) filename name of the INI file.

Returns:

(s) list of keywords or sections.

IniItemizePvt will scan the specified section in a private INI file, and return a space-delimited list of all
keyword names contained within that section. If a null string ("") is given as the section name,
IniItemizePvt will return a list of all section names contained within the file. Case is not significant in
section names.

Example:

; Returns all keywords in the [Boot] section of SYSTEM.INI

keywords = IniItemizePvt("Boot", "system.ini")

See Also:

IniDeletePvt, IniItemize, IniReadPvt, IniWritePvt

IniRead

Reads data from the WIN.INI file.

Syntax:

IniRead (section, keyname, default)

Parameters:

"section" = the major heading to read the data from.

"keyname = the name of the item to read.

"default" = string to return if the desired item is not found.

Returns:

(string) data from WIN.INI file.

This function allows a program to read data from the WIN.INI file.

The WIN.INI file has the form:

[section]

keyname=settings

Most of the entries in WIN.INI are set from the Windows Control Panel program, but individual
applications can also use it to store option settings in their own sections.

Example:

; Find the default output device

a = IniRead("windows", "device", "No Default")

Message("Default Output Device", a)

See Also:

IniWrite, IniReadPvt, IniWritePvt, Environment

IniReadPvt

Reads data from a private INI file.

Syntax:

IniReadPvt (section, keyname, default, filename)

Parameters:

"section" = the major heading to read the data from.

"keyname = the name of the item to read.

"default" = string to return if the desired item is not found.

"filename" = name of the INI file.

Returns:

(string) data from the INI file.

Looks up a value in the "filename".INI file. If the value is not found, the "default" will be returned.

Example:

IniReadPvt("Main", "Lang", "English", "WB.INI")

Given the following segment from WB.INI:

[Main]

Lang=French

The batch file line above would return:

French

See Also:

IniWritePvt, IniRead, IniWrite

IniWrite

Writes data to the WIN.INI file.

Syntax:

IniWrite (section, keyname, data)

Parameters:

"section" = major heading to write the data to.

"keyname = name of the data item to write.

"data" = string to write to the WIN.INI file.

Returns:

(integer) always @TRUE.

This command allows a program to write data to the WIN.INI file. The "section" is added to the file if it
doesn't already exist.

Example:

; Change the list of pgms to load upon Windows

; startup

loadprogs = IniRead("windows", "load", "")

newprogs = AskLine("Add Pgm To LOAD= Line", "Add:", loadprogs)

IniWrite("windows", "load", newprogs)

See Also:

IniRead, IniReadPvt, IniWritePvt

IniWritePvt

Writes data to a private INI file.

Syntax:

IniWritePvt (section, keyname, data, filename)

Parameters:

"section" = major heading to write the data to.

"keyname = name of the data item to write.

"data" = string to write to the INI file.

"filename" = name of the INI file.

Writes a value in the "filename".INI file.

Example:

IniWritePvt("Main", "Lang", "French, "WB.INI")

This would create the following entry in WB.INI:

[Main]

Lang=French

See Also:

IniReadPvt, IniRead, IniWrite

IntControl

Internal control functions.

Syntax:

IntControl (request#, p1, p2, p3, p4)

Parameters:

(i) request# specifies which sub-function is to be performed (see below).

(s) p1 - p4 parameters which may be required by the function (see below).

Returns:

(s) varies (see below).

Short for Internal Control, a special function that permits numerous internal operations in the CP and WB
products. The first parameter of IntControl defines exactly what the function does, the other parameters
are possible arguments to the function.

Warning: Many of these operations are useful only under special circumstances, and/or by technically
knowledgeable users. Some could lead to adverse side effects. If it isn't clear to you what a particular
function does, don't use it.

IntControl (1, p1, 0, 0, 0)

Just a test IntControl. It echoes back P1 & P2 and P3 & P4 in a pair of message boxes.

IntControl (2, 0, 0, 0, 0) (CP only)

Returns the number of Command Post program windows currently open.

IntControl (3, 0, 0, 0, 0) (CP only)

Writes the positions of each open Command Post window to the WWW-PROD.INI file, using the
WinPositionXY format.

IntControl (4, p1, 0, 0, 0)

Controls whether or not a dialog box with a file listbox in it has to return a file name, or may return merely
a directory name or nothing.

P1 Meaning

0 May return nothing, or just a directory name

1 Must return a file name (default)

IntControl (5, p1, 0, 0, 0)

Controls whether system & hidden files are seen and processed.

P1 Meaning

0 System & Hidden files not used (default)

1 System & Hidden files seen and used

IntControl (6, 0, 0, 0, 0) (CP only)

Positions all open Command Post windows, based on the information in the WWW-PROD.INI file.

IntControl (8, 0, 0, 0, 0) (CP only)

Reloads Command Post menus, just like selecting "Reload Menu" from the system menu.

IntControl (9, p1, 0, 0, 0) (CP only)

Controls Command Post window resizing.

P1 Meaning

0 Resize automagically on open and close (default)

1 disable resize on window close

2 disable resize on window open

3 disable resize on open and close

IntControl (10, p1, 0, 0, 0)

Interrogates the Command Extender DLL status

P1 Meaning

0 Command Extender present

0 No

1 Yes

1 Command Extender version

-1 No Extender present

0 Incompatible extender present

(other) Extender version code

2 Interpreter's Extender interface code

3 Name of Extender DLL

IntControl (11, p1, 0, 0, 0) (CP only)

Used to tell Command Post that it is (or is not) a shell, contrary to what it really is. That is, if it is really a
shell, you can disable the shell-like characteristics, or if it is not a shell, enable its shell characteristics.

P1 Meaning

0 Play standard app

1 Play shell

IntControl (12, p1, 0, 0, 0) (WB only)

Used to direct WinBatch to allow itself to be terminated without warning when Windows shuts down and a
batch file is still running

P1 Meaning

0 WinBatch complains on shutdown (default)

1 WinBatch will terminate quietly

IntControl (15, 0, 0, 0, 0) (WB only)

Returns currently executing WBT file name; the same as the "paramfile" variable.

IntControl (18, 0, 0, 0, 0)

Suspends the program (WB or CP) waiting for some other process to do the equivalent of IntControl(19).
This command will hang your system if used improperly.

IntControl (19, p1, 0, 0, 0)

Un-suspends a process stopped with IntControl(18). P1 is a window handle (not a window title).
Windows handles may be derived from window titles using IntControl(21).

IntControl (20, 0, 0, 0, 0)

Returns window handle of current Command Post or WinBatch window.

IntControl (21, p1, 0, 0, 0)

Returns window handle of window matching the partial window-name in p1.

IntControl (22, p1, p2, p3, p4)

Issues a Windows "SendMessage".

p1 Window handle to send to

p2 Message ID number (in decimal)

p3 wParam value

p4 assumed to be a character string. String is copied to a GMEM_LOWER buffer, and a
LPSTR to the copied string is passed as lParam. The GMEM_LOWER buffer is freed
immediately upon return from the SendMessage

IntControl (23, 0, 0, 0, 0)

Issues a windows PostMessage

p1 Window handle

p2 Message ID number (in decimal)

p3 wParam

p4 lParam -- assumed to be numeric

IntControl (66, 0, 0, 0, 0)

Restarts Windows, just like exiting to DOS and typing WIN again. Could be used to restart Windows
after editing the SYSTEM.INI file to change video modes.

IntControl (67, 0, 0, 0, 0)

Performs a warm boot of the system, just like <Ctrl-Alt-Del>. Could be used to reboot the system after
editing the AUTOEXEC.BAT or CONFIG.SYS files.

Note: IntControl(67) works only in Windows 3.1 or higher. In Windows 3.0, it behaves just like
IntControl(66) and restarts Windows.

IsDefined

Determines if a variable name is currently defined.

Syntax:

IsDefined (var)

Parameters:

"var" = a variable name.

Returns:

(integer) @YES if the variable is currently defined;

@NO if it was never defined or has been dropped.

A variable is defined the first time it appears at the left of an equal sign in a statement. It stays defined
until it is explicitly dropped with the Drop function, or until the batch file ends.

Example:

def = IsDefined(thisvar)

If def == @FALSE Then Message("ERROR!", "Variable not defined")

See Also:

Drop

IsKeyDown

Tells about keys/mouse.

Syntax:

IsKeyDown(keycodes)

Parameters:

keycodes = @SHIFT and/or @CTRL

Returns:

(integer) @YES if the key is down.

@NO if the key is not down.

Determines if the Shift key or the Ctrl key is currently down.

Note: The right mouse button is the same as Shift, and the middle mouse button is the same as Ctrl.

Example:

IsKeyDown(@SHIFT)

IsKeyDown(@CTRL)

IsKeyDown(@CTRL | @SHIFT)

IsKeyDown(@CTRL & @SHIFT)

See Also:

WaitForKey

IsLicensed

Tells if the WIL interpreter is licensed.

Syntax:

IsLicensed()

Parameters:

(none)

Returns:

(integer) @YES if current version of the WIL interpreter is licensed.

@NO if current version of the WIL interpreter is not licensed.

Returns information on whether or not the current version of the WIL interpreter is a licensed copy.

IsLicensed

See Also:

Version

IsMenuChecked (Special Function)

Determines if a menu item has a checkmark next to it.

Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.

Syntax:

IsMenuChecked (menuname)

Parameters:

(s) menuname name of the menu item to test.

Returns:

(i) @YES if the menu item has a checkmark;
@NO if it doesn't.

You can place a checkmark next to a menu item with the MenuChange command, to indicate an option
has been enabled. This function lets you determine if the menu item has already been checked or not.

Example:

; assume we've defined a "Misc | Prompt Often" menu item
prompt = IsMenuChecked("MiscPromptOften")
ifprompt = StrSub(";", 1, (prompt == @FALSE))
Execute %ifprompt% confirm = AskYesNo("???", "REALLY do this?")
; some risky operation the user has just confirmed they want to do
Execute %ifprompt% Terminate(confirm != @YES, "", "")

See Also:

IsMenuEnabled, MenuChange

IsMenuEnabled (Special Function)

Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.

Determines if a menu item has been enabled.

Syntax:

IsMenuEnabled (menuname)

Parameters:

(s) menuname name of the menu item to test.

Returns:

(i) @YES if the menu item is enabled;
@NO if it is disabled & grayed.

You can disable a menu item with the MenuChange command if you want to prevent the user from
choosing it. It shows up on the screen as a grayed item. IsMenuEnabled lets you determine if the
menu item is currently enabled or not.

Example:

; allow editing of autoexec.bat file only if choice enabled
Terminate(!IsMenuEnabled("UtilitiesEditBatFile"), "", "")
Run("notepad.exe", "c:\autoexec.bat")

See Also:

IsMenuChecked, MenuChange

IsNumber

Determines whether a variable contains a valid number.

Syntax:

IsNumber (string)

Parameters:

"string" = string to test to see if it represents a valid number.

Returns:

(integer) @YES if it contains a valid number;

@NO if it doesn't.

This function determines if a string variable contains a valid integer. Useful for checking user input prior
to using it in computations.

Example:

a = AskLine("ISNUMBER", "Enter a number", "0")

If IsNumber(a) == @NO Then Message("", "You didn't enter a number")

See Also:

Abs, Char2Num

IsRunning (Special Function)

Determines if another copy of Command Post is currently running.

Syntax:

IsRunning ()

Returns:

(integer) @YES if another copy of Command Post is running;

@NO if this is the only one.

There is no artificial restraint on the number of copies of Command Post you may run at once.

Example:

a=!(IsRunning())

Is = strsub("not ", 1, 4*a)

Message("", "Another Command Post is %Is% running.")

Drop(a, Is)

See Also:

OtherDir, OtherUpdate

ItemCount

Returns the number of items in a list.

Syntax:

ItemCount (list, delimiter)

Parameters:

"list" = a string containing a list of items to choose from.

"delimiter" = a string containing the character to act as delimiter between items in the list.

Returns:

(integer) the number of items in the list.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:

a = FileItemize("*.*")

n = ItemCount(a, " ")

Message("Note", "There are %n% files")

See Also:

DirItemize, FileItemize, WinItemize, ItemExtract, ItemSelect

ItemExtract

Returns the selected item from a list.

Syntax:

ItemExtract (select, list, delimiter)

Parameters:

select = the position in "list" of the item to be selected.

"list" = a string containing a list of items to choose from.

"delimiter" = a string containing the character to act as delimiter between items in the list.

Returns:

(string) the selected item.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:

bmpfiles = FileItemize("*.bmp")

bmpcount = ItemCount(bmpfiles, " ")

pos = (Random(bmpcount - 1)) + 1

paper = ItemExtract(pos, bmpfiles, " ")

Wallpaper(paper, @FALSE)

See Also:

DirItemize, FileItemize, WinItemize, ItemCount, ItemSelect

ItemInsert

Adds an item to a list.

Syntax:

ItemInsert (item, index, list, delimiter)

Parameters:

(s) item a new item to add to list.

(i) index the position in list after which the item will be inserted.

(s) list a string containing a list of items.

(s) delimiter a character to act as a delimiter between items in the list.

Returns:

(s) new list, with item inserted.

This function inserts a new item into an existing list, at the position following index. It returns a new list,
with the specified item inserted; the original list (list) is unchanged. For example, specifying an index of
1 causes the new item to be inserted after the first item in the list; i.e., the new item becomes the second
item in the list.

You can specify an index of 0 to add the item to the beginning of the list, and an index of -1 to append the
item to the end of the list.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:

newlist = ItemInsert(item, index, list, delimiter)

See Also:

ItemCount, ItemRemove

ItemLocate

Returns the position of an item in a list.

Syntax:

ItemLocate (item, list, delimiter)

Parameters:

(s) item item to search for in list.

(s) list a string containing a list of items.

(s) delimiter a character to act as a delimiter between items in the list.

Returns:

(i) position in list of item, or 0 if no match found.

This function finds the first occurrence of item in the specified list, and returns the position of the item (the
first item in a list has a position of 1). If the item is not found, the function will return a 0.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:

ItemLocate(item, list, delimiter)

See Also:

ItemExtract

ItemRemove

Removes an item from a list.

Syntax:

ItemRemove (index, list, delimiter)

Parameters:

(i) index the position in list of the item to be removed.

(s) list a string containing a list of items.

(s) delimiter a character to act as a delimiter between items in the list.

Returns:

(s) new list, with item removed.

This function removes the item at the position specified by index from a list. The delimiter following the
item is removed as well. It returns a new list, with the specified item removed; the original list (list) is
unchanged.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded spaces.

Example:

newlist = ItemRemove(index, list, delimiter)

See Also:

ItemCount, ItemInsert

ItemSelect

Allows the user to choose an item from a listbox.

Syntax:

ItemSelect (title, list, delimiter)

Parameters:

"title" = the title of dialog box to display.

"list" = a string containing a list of items to choose from.

"delimiter" = a string containing the character to act as delimiter between items in the list.

Returns:

(string) the selected item.

This function displays a dialog box with a listbox inside. This listbox is filled with a sorted list of items
taken from a string you provide to the function.

Each item in the string must be separated ("delimited") by a character, which you also pass to the
function.

The user selects one of the items by either doubleclicking on it, or single-clicking and pressing OK. The
item is returned as a string.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:

DirChange("e:\word")

alldotfiles = FileItemize("*.dot")

dotfile = ItemSelect("W4W Templates", alldotfiles, " ")

Run("winword.exe", dotfile)

Which would produce:

See Also:

AskYesNo, Display, DirItemize, FileItemize, WinItemize, Message, Pause, TextBox,
ItemCount, ItemExtract

ItemSort

Sorts a list.

Syntax:

ItemSort (list, delimiter)

Parameters:

(s) list a string containing a list of items.

(s) delimiter a character to act as a delimiter between items in the list.

Returns:

(s) new, sorted list.

This function sorts a list, using an ANSI sort sequence. It returns a new, sorted list; the original list is
unchanged.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded spaces.

Example:

newlist = ItemSort(list, delimiter)

See Also:

ItemExtract

LastError

Returns the most-recent error encountered during the current batch file.

Syntax:

LastError ()

Parameters:

(none)

Returns:

(integer) most-recent WIL error code encountered.

WIL errors are numbered according to their severity. "Minor" errors go from 1000 through 1999.
Moderate errors are 2000 through 2999. Fatal errors are numbered 3000 to 3999.

Depending on which error mode is active when an error occurs, you may not get a chance to check the
error code. See ErrorMode for a discussion of default error handling.

Don't bother checking for "fatal" error codes. When a fatal error occurs, the batch file is canceled before
the next WIL statement gets to execute (regardless of which error mode is active).

Every time the LastError function is called, the "last error" indicator is reset to zero.

A full listing of possible errors you can encounter in processing a batch file is in Appendix B (pg.).

Example:

ErrorMode(@OFF)

FileCopy("data.dat", "c:\backups", @FALSE)

ErrorMode(@CANCEL)

If LastError() == 1006 Then Message("Error", "Please call Tech Support at 555-9999.")

See Also:

Debug, ErrorMode

LogDisk

Logs (activates) a disk drive.

Syntax:

LogDisk (drive-letter)

Parameters:

"drive-letter" = the disk drive to log into.

Returns:

(integer) @TRUE if the current drive was changed;

@FALSE if the drive doesn't exist.

Use this function to change the logged disk drive.

This command produces the same effect as if you typed the drive name from the DOS command prompt.

Example:

LogDisk("c:")

See Also:

DirChange

Max

Returns largest number in a list of numbers.

Syntax:

Max (integer [, integer]...)

Parameters:

integer = an integer number.

Returns:

(integer) largest parameter.

Use this function to determine the largest of a set of comma-delimited integers.

Example:

a = Max(5, -37, 125, 34, 2345, -32767)

Message("Largest number is", a)

See Also:

Abs, Average, Min

MenuChange (Special Function)

Checks, unchecks, enables, or disables a menu item.

Syntax:

MenuChange (menuname, flags)

Parameters:

"menuname" = menu item whose status you wish to change.

"flags" = @CHECK, @UNCHECK,

@ENABLE, or @DISABLE.

Returns:

(integer) always @TRUE.

There are currently two ways you can modify a menu item:

You can check and uncheck the item to imply that it corresponds to an option that can be turned on or off.

You can temporarily disable the item (it shows up as gray) and later re-enable it.

The two sets of flags (@Check/@UnCheck and @Enable/@Disable) can be combined in one function
call by using the | (or) operator.

Example:

MenuChange (FilePrint, @Disable)

MenuChange (WPWrite, @Enable|@Check)

See Also:

IsMenuChecked, IsMenuEnabled

Message

Displays a message to the user.

Syntax:

Message (title, text)

Parameters:

"title" = title of the message box.

"text" = text to display in the message box.

Returns:

(integer) always @TRUE.

Use this function to display a message to the user. The user must respond by selecting the OK button
before processing will continue.

Example:

Message("Current directory is", DirGet())

See Also:

Display, Pause

Min

Returns lowest number in a list of numbers.

Syntax:

Min (integer [, integer]...)

Parameters:

integer = an integer number.

Returns:

(integer) lowest parameter.

Use this function to determine the lowest of a set of comma-delimited integers.

Example:

a = Min(5, -37, 125, 34, 2345, -32767)

Message("Smallest number is", a)

See Also:

Abs, Average, Max

MouseInfo

Returns assorted mouse information.

Syntax:

MouseInfo (request#)

Parameters:

(i) request# see below.

Returns:

(s) see below.

The information returned by MouseInfo depends on the value of request#.

Req# Return value

0 Window name under mouse

1 Top level parent window name under mouse

2 Mouse coordinates, assuming a 1000x1000 virtual screen

3 Mouse coordinates in absolute numbers

4 Status of mouse buttons, as a bitmask:

Binary Decimal Meaning

000 0 No buttons down

001 1 Right button down

010 2 Middle button down

011 3 Right and Middle buttons down

100 4 Left button down

101 5 Left and Right buttons down

110 6 Left and Middle buttons down

111 7 Left, Middle, and Right buttons down

For example, if mouse is at the center of a 640x480 screen and above the "Clock" window, and the left
button is down, the following values would be returned:

Req# Return value

1 "Clock"

2 "500 500"

3 "320 240"

4 "4"

Example:

Display(1, "", "Press a mouse button to continue")

:loop

buttons = MouseInfo(4)

If buttons == 0 Then Goto loop

If buttons & 4 Then Display(1, "", "Left button was pressed")

If buttons & 1 Then Display(1, "", "Right button was pressed")

See Also:

WinMetrics, WinParmGet

NetAddCon

Connects network resources to imaginary local disk drives or printer ports.

Syntax:

NetAddCon (net-path, password, local-name)

Parameters:

(s) net-path net resource or string returned by x.

(s) password password required to access resource, or "".

(s) local-name local drive name or printer port.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

You can use NetAddCon to connect a local drive to a network directory, in which case "local-name" will
be a drive name (eg, "Z:"). You can also connect a local printer port to a network print queue, in which
case "local-name" will be the name of the printer port (eg, "LPT1").

Use the NetBrowse function to obtain a value for "net-path".

If no password is required, use a null string ("") for the "password" parameter.

Example:

availdrive = DiskScan(0)

drvlen = StrLen(availdrive)

If drvlen == 0 Then Goto nomore

availdrive = StrSub(availdrive, drvlen - 2, 2)

netpath = NetBrowse(0)

pswd = AskPassword("Enter password for", netpath)

NetAddCon(netpath, pswd, availdrive)

Exit

:nomore

Message("Connect Drive to Net", "No drives avail for assignment")

See Also:

NetBrowse, NetCancelCon, NetGetCon

NetAttach

Attaches to a network file server.

Syntax:

NetAttach (server-name)

Parameters:

(s) server-name name of the network file server.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

NetAttach("userapps")

See Also:

NetAddCon, NetDetach, NetLogin

NetBrowse

Displays a dialog box allowing the user to select a network resource.

Syntax:

NetBrowse (request#)

Parameters:

(i) request# see below.

Returns:

(s) see below.

Displays a dialog box allowing the user to select a network resource. Request#=0 allows selection of a
print queue and Request#=1 allows selection of a network directory. This function returns a string that
can be used by NetAddCon to add a connection.

Example:

availdrive = DiskScan(0)

drvlen = StrLen(availdrive)

If drvlen == 0 Then Goto nomore

availdrive = StrSub(availdrive, drvlen - 2, 2)

netpath = NetBrowse(0)

pswd = AskPassword("Enter password for", netpath)

NetAddCon(netpath, pswd, availdrive)

Exit

:nomore

Message("Connect Drive to Net", "No drives avail for assignment")

See Also:

NetAddCon

NetCancelCon

Breaks a network connection.

Syntax:

NetCancelCon (name, force)

Parameters:

(s) name network resource name or local name.

(i) force force flag (see below).

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

If "force" is set to 0, NetCancelCon will not break the connection if any files on that connection are still
open. If "force" is set to 1, the connection will be broken regardless.

Example:

availdrive = DiskScan(4)

n = ItemCount(availdrive, " ")This example in plain text:

If n == 0 Then Exit

i = 1

dislist = ""

:loop

drv = ItemExtract(i, availdrive, " ")

dislist = StrCat(drv, Num2Char(9), NetGetCon(drv), "|")

i = i + 1

If i < n Then Goto loop

availdrive = ItemSelect("Disconnect", dislist, "|")

NetCancelCon(availdrive, 0)

See Also:

NetAddCon, NetGetCon

NetDetach

Detaches from a network file server.

Syntax:

NetDetach (server-name)

Parameters:

(s) server-name name of the network file server.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

NetDetach("userapps")

See Also:

NetAttach, NetCancelCon

NetDialog

Brings up the network driver's dialog box.

Syntax:

NetDialog ()

Parameters:

(none)

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

A network driver's dialog box displays copyright information, and may allow access to the network,
depending on the particular network driver. The WIL program will wait until the network dialog terminates
before continuing.

Example:

NetDialog()

NetGetCaps

Returns information on network capabilities.

Syntax:

NetGetCaps (request#)

Parameters:

(i) request# see below.

Returns:

(i) see below.

NetGetCaps returns 0 if no network is installed (it is the only network function you can use without having
a network installed and not get an error).

Req# Return value

1 Network driver specification number

2 Type of network installed:

0 None

256 MS Network

512 Lan Manager

768 Novell NetWare

1024 Banyan Vines

1280 10 Net

(other) Other network

3 Network driver version number

4 Returns 1 if any network is installed

6 Bitmask indicating whether the network driver supports the following

connect functions:

1 AddConnection

2 CancelConnection

4 GetConnection

8 AutoConnect via DOS

16 BrowseDialog

7 Bitmask indicating whether the network driver supports the following

print functions:

2 Open Print Job

4 Close Print Job

16 Hold Print Job

32 Release Print Job

64 Cancel Print Job

128 Set number of copies

256 Watch Print Queue

512 Unwatch Print Queue

1024 Lock Queue Data

2048 Unlock Queue Data

4096 Driver will send QueueChanged messages to Print Manager

8192 Abort Print Job

Example:

caps = NetGetCaps(6)

If caps & 16 Then Message("", "Your network supports BrowseDialog")

See Also:

NetGetUser, WinConfig, WinMetrics, WinParmGet

NetGetCon

Returns the name of a connected network resource.

Syntax:

NetGetCon (local-name)

Parameters:

(s) local-name local drive name or printer port.

Returns:

(s) name of network resource.

NetGetCon returns the name of the network resource currently connected to "local-name".

Example:

local = AskLine("NetGetCon", "Enter local drive name", "")

If local == "" Then Exit

resource = NetGetCon(local)

Message("NetGetCon", "%local% is connected to %resource%")

See Also:

NetAddCon, NetCancelCon

NetGetUser

Returns the name of the user currently logged into the network.

Syntax:

NetGetUser ()

Parameters:

(none)

Returns:

(s) name of current user.

Example:

IniWritePvt("Current Users", "Excel", NetGetUser(), "usagelog.ini")

Run("excel.exe", "")

See Also:

NetGetCaps

NetLogin

Performs a network login.

Syntax:

NetLogin (server-name, user-name, password)

Parameters:

(s) server-name name of the network file server.

(s) user-name name of the current user.

(s) password password required to access server, or "".

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

pwd = AskPassword("Hello", "Enter password for network access")
NetLogin("userapps", "admin1", pwd)

See Also:

NetAttach, NetLogout

NetLogout

Performs a network logout.

Syntax:

NetLogout (server-name)

Parameters:

(s) server-name name of the network file server.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

NetLogout("userapps")

See Also:

NetLogin

NetMapRoot

Maps a local drive to a network resource.

Syntax:

NetMapRoot (local-name, net-path)

Parameters:

(s) local-name local drive name.

(s) net-path net resource or string returned by NetBrowse.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function maps a local drive letter as the fake root to a network resource. This is supported by Novell
NetWare, but may not work with any other networks.

Example:

availdrive = DiskScan(0)
drvlen = StrLen(availdrive)
If drvlen == 0 Then Goto nomore
availdrive = StrSub(availdrive, drvlen - 2, 2)
netpath = NetBrowse(0)
NetMapRoot(availdrive, netpath)
Exit
:nomore
Message("Connect Drive to Net", "No drives avail for assignment")

See Also:

NetAddCon, NetBrowse, NetCancelCon

NetMemberGet

Determines whether the current user is a member of a specific group.

Syntax:

NetMemberGet (server-name, group-name)

Parameters:

(s) server-name name of the network file server.

(s) group-name name of the group.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

member = NetMemberGet("userapps", "sales")
If member == @YES Then Run("notepad.exe", "dailyrpt.txt")

See Also:

NetMemberSet

NetMemberSet

Sets the current user as a member of a group.

Syntax:

NetMemberSet (server-name, group-name)

Parameters:

(s) server-name name of the network file server.

(s) group-name name of the group.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

NetMemberSet("userapps", "sales")

See Also:

NetMemberGet

NetMsgAll

Broadcasts a message to all users on the network.

Syntax:

NetMsgAll (server-name, message)

Parameters:

(s) server-name name of the network file server.

(s) message message to be broadcast.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

NetMsgAll("userapps", "System going down in 5 minutes.")

See Also:

NetMsgSend

NetMsgSend

Sends a message to a specific user on the network.

Syntax:

NetMsgSend (server-name, user-name, message)

Parameters:

(s) server-name name of the network file server.

(s) user-name name of the user to whom the message should be sent.

(s) message message to be sent.

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This function may not work with all networks.

Example:

NetMsgSend("userapps", "compmgr", "Are those reports ready yet?")

See Also:

NetMsgAll

Num2Char

Converts a number to its character equivalent.

Syntax:

Num2Char (integer)

Parameters:

number = any number from 0 to 255.

Returns:

(string) one-byte string containing the character the number represents.

Use this function to convert a number to its ASCII equivalent.

Example:

; Build a variable containing a CRLF combo

crlf = StrCat(Num2Char(13), Num2Char(10))

Message("NUM2CHAR", StrCat("line1", crlf, "line2"))

See Also:

Char2Num

OtherDir (Special Function)

Finds the directory where the other copy of Command Post is running, if any.

Syntax:

OtherDir ()

Parameters:

"string" = pathname to "other" directory.

Returns:

(string) the directory of the second-most recently used Command Post window. The current
window is considered the most recently used directory.

Use this command to determine directory of the other Command Post window. Useful in setting up copy
and move operations between two Command Post copies.

Example:

a=DirGet()

b=OtherDir()

Message("Directory of this CmdPost window is",a)

Message("Directory of the other CmdPost window is",b)

See Also:

DirGet, DirHome, OtherUpdate

OtherUpdate (Special Function)

Updates another Command Post directory display.

Syntax:

OtherUpdate ()

Returns:

(integer) @TRUE if another copy of Command Post was found to update;

@FALSE if this is the only copy running.

This command updates the File Manager display of the next-most recently invoked copy of Command
Post. This is useful if your menu item changes a directory; i.e. if a file or directory is created, moved,
renamed, or deleted. OtherUpdate helps ensure the other Command Post display immediately reflects
the change the user caused from this copy.

Example:

FileCopy ("MyFile.txt", OtherDir(), @FALSE)

OtherUpdate ()

See Also:

OtherDir, SetDisplay

ParseData

Parses the passed string, just like passed parameters are parsed.

Syntax:

ParseData (string)

Parameters:

"string" = string to be parsed.

Returns:

(integer) number of parameters in "string".

This function breaks a string constant or string variable into new sub-string variables named param1,
param2, etc. (maximum of nine parameters). Blank spaces in the original string are used as delimiters
to create the new variables.

Param0 is the count of how many sub-strings are found in "string".

Example:

username = AskLine("Hello", "Please enter your name","")

ParseData(username)

If the user enters:

Joe Q. User

ParseData would create the following variables:

param1 == Joe

param2 == Q.

param3 == User

param0 == 3

See Also:

ItemExtract, StrSub

Pause

Provides a message to user. User may cancel processing.

Syntax:

Pause (title, text)

Parameters:

"title" = title of pause box.

"text" = text of the message to be displayed.

Returns:

(integer) always @TRUE.

This function displays a message to the user with an exclamation point icon. The user may respond by
selecting the OK button, or may cancel the processing by selecting Cancel.

The Pause function is similar to the Message function, except for the addition of the Cancel button and
icon.

Example:

Pause("Change Disks", "Insert new disk into Drive A:")

See Also:

Display, Message

PlayMedia

Controls multimedia devices.

Syntax:

PlayMedia (command-string)

Parameters:

(s) command-string string to be sent to the multimedia device.

Returns:

(s) response from the device.

If the appropriate Windows multimedia extensions are present, this function can control multimedia
devices. Valid command strings depend on the multimedia devices and drivers installed. The basic
Windows multimedia package has a waveform device to play and record waveforms, and a sequencer
device to play MID files. Refer to the appropriate documentation for information on command strings.

Many multimedia devices accept the WAIT or NOTIFY parameters as part of the command string:

WAIT Causes the system to stop processing input until the requested operation is
complete. You cannot switch tasks when WAIT is specified.

NOTIFY Causes the WIL program to suspend execution until the requested operation
completes. You can perform other tasks and switch between tasks when NOTIFY is
specified.

WAIT NOTIFY Same as WAIT

If neither WAIT nor NOTIFY is specified, the multimedia operation is started and control returns
immediately to the WIL program.

In general, if you simply want the WIL program to wait until the multimedia operation is complete, use the
NOTIFY keyword. If you want the system to hang until the operation is complete, use WAIT. If you just
want to start a multimedia operation and have the program continue processing, don't use either keyword.

The return value from PlayMedia is whatever string the driver returns. This will depend on the particular
driver, as well as on the type of operation performed.

Example:

; Plays a music CD on a CDAudio player. It plays whatever is in the

; drive, from start to finish

stat = PlayMedia("status cdaudio mode")

answer = 1

If stat == "playing" Then answer = AskYesNo("CD Audio", "CD is

Playing. Stop?")

If answer == 0 Then Exit

PlayMedia("open cdaudio shareable alias donna notify")This example in plain text:

PlayMedia("set donna time format tmsf")

PlayMedia("play donna from 1")

PlayMedia("close donna")

Exit

:cancel

PlayMedia("set cdaudio door open")

See Also:

PlayMidi, PlayWaveForm

PlayMidi

Plays a MID or RMI sound file.

Syntax:

PlayMidi (filename, mode)

Parameters:

(s) filename name of the MID or RMI sound file.

(i) mode play mode (see below).

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and MIDI-compatible hardware is installed, this
function will play a MID or RMI sound file. If "filename" is not in the current directory and a directory is
not specified, the path will be searched to find the file.

If "mode" is set to 0, the WIL program will wait for the sound file to complete before continuing. If "mode"
is set to 1, it will start playing the sound file and continue immediately.

Example:

PlayMidi("canyon.mid", 1)

See Also:

PlayMedia, PlayWaveForm

PlayWaveForm

Plays a WAV sound file.

Syntax:

PlayWaveForm (filename, mode)

Parameters:

(s) filename

(i) mode play mode (see below).

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and waveform-compatible hardware is installed,
this function will play a WAV sound file. If "filename" is not in the current directory and a directory is not
specified, the path will be searched to find the file. If "filename is not found, the WAV file associated with
the "SystemDefault" keyword is played, (unless the "NoDefault" setting is on).

Instead of specifying an actual filename, you may specify a keyword name from the [Sound] section of the
WIN.INI file (eg, "SystemStart"), in which case the WAV file associated with that keyword name will be
played.

"Mode" is a bitmask, composed of the following bits:

Mode Meaning

0 Wait for the sound to end before continuing.

1 Don't wait for the sound to end. Start the sound and immediately process more
statements.

2 If sound file not found, do not play a default sound

9 Continue playing the sound forever, or until a

PlayWaveForm("", 0) statement is executed

16 If another sound is already playing, do not interrupt it. Just ignore this PlayWaveForm
request.

You can combine these bits using the binary OR operator.

The command PlayWaveForm("", 0) can be used at any time to stop sound.

Example:

PlayWaveForm("tada.wav", 0)

PlayWaveForm("SystemDefault", 1 | 16)

See Also:

PlayMedia, PlayMidi

Random

Computes a pseudo-random number.

Syntax:

Random (max)

Parameters:

max = largest desired integer number.

Returns:

(integer) unpredictable positive number.

This function will return a random integer between 0 and "max".

Example:

a = Random(79)

Message("Random number between 0 and 79", a)

Reload (Special Function)

Reloads menu file(s) in those special programs that use them.

Syntax:

Reload ()

Parameters:

(none)

Returns:

(i) always 1.

This function is used to reload the WIL Interpreter's menu file(s). It is useful after editing a menu file, to
cause the changes to immediately take effect.

Note: This command does not take effect until the WIL program has completed, regardless of where the
command may appear in the program.

Example:

RunZoomWait("notepad.exe", "c:\win\cmdpost.cpm")
Reload()

Return

Used to return from a Call or a CallExt to the calling program.

Syntax:

Return

If the program was not called, then an Exit is assumed.

Example:

Display(2, "End of subroutine", "Returning to MAIN.WBT")

Return

See Also:

Call, Exit

Run

Runs a program as a normal window.

Syntax:

Run (program-name, parameters)

Parameters:

"program-name" =the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:

(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application.

If the drive and path are not part of the program name, the current directory will be examined first, and
then the DOS path will be searched to find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Example:

Run("notepad.exe", "abc.txt")

Run("clock.exe", "")

Run("paint.exe", "pict.msp")

See Also:

RunHide, RunIcon, RunZoom, WinClose, WinWaitClose

RunHide

Runs a program as a hidden window.

Syntax:

RunHide (program-name, parameters)

Parameters:

"program-name" =the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:

(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as a hidden window.

If the drive and path are not part of the program name, the current directory will be examined first, and
then the DOS path will be searched to find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Note: When this command launches an application, it informs it that you want it to run as a hidden
window. Whether or not the application honors your wish is beyond RunHide's control.

Example:

RunHide("notepad.exe", "abc.txt")

RunHide("clock.exe", "")

RunHide("paint.exe", "pict.msp")

See Also:

Run, RunIcon, RunZoom, WinHide, WinClose, WinWaitClose

RunHideWait

Runs a program as a hidden window, and waits for it to close.

Syntax:

RunHideWait (program-name, parameters)

Parameters:

(s) program-name the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

(s) parameters optional parameters as required by the application.

Returns:

(i) @TRUE if the program was found;
@FALSE if it wasn't.

Use this command to run an application as a hidden window. The WIL program will suspend processing
until the application is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Note: When this command launches an application, it informs it that you want it to run as a hidden
window. Whether or not the application honors your wish is beyond RunHideWait's control.

Example:

NetAddCon("winword", "", "g:")
RunHideWait("winword.exe", "")
NetCancelCon("g:", 0)

See Also:

RunHide, RunIconWait, RunWait, RunZoomWait, WinWaitClose

RunIcon

Runs a program as an iconic (minimized) window.

Syntax:

RunIcon (program-name, parameters)

Parameters:

"program-name" =the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:

(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as an icon.

If the drive and path are not part of the program name, the current directory will be examined first, and
then the DOS path will be searched to find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to begin as an
icon. Whether or not the application honors your wish is beyond RunIcon's control.

Example:

RunIcon("notepad.exe", "abc.txt")

RunIcon("clock.exe", "")

RunIcon("paint.exe", "pict.msp")

See Also:

Run, RunHide, RunZoom, WinIconize, WinClose, WinWaitClose

RunIconWait

Runs a program as an iconic (minimized) window, and waits for it to close.

Syntax:

RunIconWait (program-name, parameters)

Parameters:

(s) program-name the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

(s) parameters optional parameters as required by the application.

Returns:

(i) @TRUE if the program was found;
@FALSE if it wasn't.

Use this command to run an application as an icon. The WIL program will suspend processing until the
application is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to begin as an
icon. Whether or not the application honors your wish is beyond RunIconWait's control.

Example:

NetAddCon("winword", "", "g:")
RunIconWait("winword.exe", "")
NetCancelCon("g:", 0)

See Also:

IconArrange, RunHideWait, RunIcon, RunWait, RunZoomWait, WinWaitClose

RunWait

Runs a program as a normal window, and waits for it to close.

Syntax:

RunWait (program-name, parameters)

Parameters:

(s) program-name the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

(s) parameters optional parameters as required by the application.

Returns:

(i) @TRUE if the program was found;
@FALSE if it wasn't.

Use this command to run an application. The WIL program will suspend processing until the application
is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Example:

NetAddCon("winword", "", "g:")
RunWait("winword.exe", "")
NetCancelCon("g:", 0)

See Also:

AppWaitClose, Run, RunHideWait, RunIconWait, RunZoomWait, WinWaitClose

RunZoom

Runs a program as a full-screen (maximized) window.

Syntax:

RunZoom (program-name, parameters)

Parameters:

"program-name" =the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

"parameters" = optional parameters as required by the application.

Returns:

(integer) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as a full-screen window.

If the drive and path are not part of the program name, the current directory will be examined first, and
then the DOS path will be searched to find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to be maximized
to full-screen. Whether or not the application honors your wish is beyond RunZoom's control.

Example:

RunZoom("notepad.exe", "abc.txt")

RunZoom("clock.exe", "")

RunZoom("paint.exe", "pict.msp")

See Also:

Run, RunHide, RunIcon, WinZoom, WinClose, WinWaitClose

RunZoomWait

Runs a program as a full-screen (maximized) window, and waits for it to close.

Syntax:

RunZoomWait (program-name, parameters)

Parameters:

(s) program-name the name of the desired.EXE,.COM,.PIF,.BAT file, or a data file.

(s) parameters optional parameters as required by the application.

Returns:

(i) @TRUE if the program was found;
@FALSE if it wasn't.

Use this command to run an application as a full-screen window. The WIL program will suspend
processing until the application is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of.EXE,.COM,.PIF, or.BAT, it will be run in accordance
with whatever is in the [Extensions] section of the WIN.INI file. When this happens, any "parameters"
you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to be maximized
to full-screen. Whether or not the application honors your wish is beyond RunZoomWait's control.

Example:

NetAddCon("winword", "", "g:")
RunZoomWait("winword.exe", "")
NetCancelCon("g:", 0)

See Also:

RunHideWait, RunIconWait, RunWait, RunZoom, WinWaitClose

SendKey

Sends keystrokes to the active application.

Syntax:

SendKey (char-string)

Parameters:

"char-string" = string of regular and/or special characters.

Returns:

(integer) always 0

This function is used to send keystrokes to the current window, just as if they had been entered from the
keyboard. Any alphanumeric character, and most punctuation marks and other symbols which appear on
the keyboard, may be sent simply by placing it in the "char-string." In addition, the following special
characters, enclosed in "curly" braces, may be placed in "char-string" to send the corresponding special
characters:

KeySendKey equivalent

~ (~)

! (!)

^ (^)

+ (+)

Backspace (BACKSPACE) or (BS)

Break (BREAK)

Clear (CLEAR)

Delete (DELETE) or (DEL)

Down Arrow (DOWN)

End (END)

Enter (ENTER) or ~

Escape (ESCAPE) or (ESC)

F1 through F16 (F1) through (F16)

Help (HELP)

Home (HOME)

Insert (INSERT)

Left Arrow (LEFT)

Page Down (PGDN)

Page Up (PGUP)

Right Arrow (RIGHT)

Space (SPACE) or (SP)

Tab (TAB)

Up Arrow (UP)

To enter an Alt, Control, or Shift key combination, precede the desired character with one or more of the
following symbols:

Alt !

Control ^

Shift +

To enter Alt-S:

SendKey("!S")

To enter Ctrl-Shift-F7:

SendKey("^+(F7)")

You may also repeat a key by enclosing it in braces, followed by a space and the total number of
repetitions desired.

To type 20 asterisks:

SendKey("(* 20)")

To move the cursor down 8 lines:

SendKey("(DOWN 8)")

It is possible to use SendKey to send keystrokes to a DOS application, but only if you are running
Windows in 386 Enhanced mode. You would then transfer the keystrokes to the DOS application via the
Clipboard. It is only possible to send standard ASCII characters to DOS applications; you cannot send
function key or Alt-key combinations.

Example:

; Start Notepad, and use *.* for filenames

Run("notepad.exe", "")

SendKey("!FO*.*~")

; run DOS batch file which starts our editor

Run("edit.bat", "")

; wait 15 seconds for editor to load

Delay(15)

; send string (with carriage return) to the clipboard

crlf = StrCat(Num2Char(13), Num2Char(10))This example in plain text:

ClipPut("Hello%crlf%")

; paste contents of clipboard to DOS window

SendKey("!(SP)EP")

See Also:

SKDebug

SetDisplay (Special Function)

Controls the display of files in the Command Post File Manager window.

Syntax:

SetDisplay (detail, sort-by, masks)

Parameters:

"detail" = level of detail. Use "SHORT" or "LONG".

"sort-by" = how to sort the filenames. Use "NAME", "KIND", "SIZE", "DATE" or "UNSORTED".

"masks" = list of masks for file display.

Returns:

(integer) @TRUE if valid options were specified;

@FALSE if invalid.

Use this command to change and/or update the file display.

Any of the fields may be null. If a field is null the previous setting is used. This command will alter the
file display Parameters:, and then re-read all the files and update the display.

A special form of this command, SETDISPLAY ("","",""), will update the file display without changing any
of the previously set Parameters.

Errors:

2105 "SetDisplay: Display type not SHORT or LONG"

2106 "SetDisplay: Sort Type not NAME, DATE, SIZE, KIND, or UNSORTED"

Example:

Windows &SDK

 &Show SDK Development Files

SetDisplay("","","*.ICO *.CUR *.BMP *.DLG *.H")

SKDebug

Controls how SendKey works

Syntax:

SKDebug(mode)

Parameters:

mode = @OFF Keystrokes sent to application. No debug file written. Default mode.

@ON Keystrokes sent to application. Debug file written.

@PARSEONLY Keystrokes not sent to application. Debug file written.

Returns:

(integer) previous SKDebug mode.

This function allows you to direct the keystrokes generated by your SendKey statements to a disk file in
addition to, or instead of, the application window. Normally, keystrokes are sent only to the application.
If you specify SKDebug (@ON), keystrokes are sent to a disk file as well as to the application. If you
specify SKDebug (@PARSEONLY), keystrokes are sent only to the disk file, and not to the application.
SKDebug (@OFF) returns to the default mode.

By default, the file which will receive the parsed keystrokes is named C:\@@SKDBUG.TXT. You can
override this by making an entry in your WIN.INI file, under the heading [WinBatch]:

[WinBatch]

SKDFile=debug.fil

where debug.fil is the filename, including complete path specification, that you want to receive the
keystrokes.

Example:

Run("notepad.exe", "")

SKDebug(@ON)

SendKey("!FO*.*~")

SKDebug(@OFF)

See Also:

SendKey

SnapShot

Takes a snapshot of the screen and pastes it to the clipboard.

Syntax:

SnapShot (request#)

Parameters:

(i) request# see below.

Returns:

(i) always 0.

Req# Meaning

0 Take snapshot of entire screen

1 Take snapshot of client area of parent window of active window

2 Take snapshot of entire area of parent window of active window

3 Take snapshot of client area of active window

4 Take snapshot of entire area of active window

Example:

SnapShot(2)

See Also:

ClipPut

Sounds

Turns sounds on or off.

Syntax:

Sounds (request#)

Parameters:

(i) request# see below.

Returns:

(i) previous Sound setting.

If Windows multimedia sound extensions are present, this function turns sounds made by the WIL
Interpreter on or off. Specify a request# of 0 to turn sounds off, and a request# of 1 to turn them on. By
default, the WIL Interpreter makes noise.

You can override this by entering:

Sounds=0

in the [Main] section of the WWWBATCH.INI file.

Example:

Sounds(0)

See Also:

Beep, PlayMedia, PlayMidi, PlayWaveForm

StrCat

Concatenates two or more strings.

Syntax:

StrCat (string1, string2[, stringN]...)

Parameters:

"string1", etc = at least two strings you want to "string" together (so to speak).

Returns:

(string) concatenation of the entire list of input strings.

Use this command to stick character strings together, or to format display messages.

Example:

user = AskLine("Login", "Your Name:", "")

Message("Login", StrCat("Hi, ", user))

; note that this will do the same:

Message("Login", "Hi, %user%")

See Also:

StrFill, StrFix, StrTrim

StrCmp

Compares two strings.

Syntax:

StrCmp (string1, string2)

Parameters:

"string1", "string2" = strings to compare.

Returns:

(integer) -1, 0, or 1; depending on whether string1 is less than, equal to, or greater than
string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the other in an ANSI
sorting sequence.

Note: This command has been included for semantic completeness. The relational operators >, >=,
==, !=, <=, and < provide the same capability.

Example:

a = AskLine("STRCMP", "Enter a test line", "")

b = AskLine("STRCMP", "Enter another test line", "")

c = StrCmp(a, b)This example in plain text:

c = c + 1

d = StrSub("less than equal to greater than", c * 12, 12)

; Note that above string is grouped into 12-character

; chunks.

; Desired chunk is removed with the StrSub statement.

Message("STRCMP", "%a% is %d% %b%")

See Also:

StriCmp, StrIndex, StrLen, StrScan, StrSub

StrFill

Creates a string filled with a series of characters.

Syntax:

StrFill (filler, length)

Parameters:

"filler" = a string to be repeated to create the return string. If the filler string is null, spaces
will be used instead.

length = the length of the desired string.

Returns:

(string) character string.

Use this function to create a string consisting of multiple copies of the filler string concatenated together.

Example:

Message("My Stars", StrFill("*", 30))

which produces a dialog titled My Stars that is filled with 30 asterisks. It includes an OK button for
canceling the message.

See Also:

StrCat,StrFix, StrLen, StrTrim

StrFix

Pads or truncates a string to a fixed length.

Syntax:

StrFix (base-string, pad-string, length)

Parameters:

"base-string" = string to be adjusted to a fixed length.

"pad-string" = appended to "base-string" if needed to fill out the desired length. If "pad-string" is
null, spaces are used instead.

length = length of the desired string.

Returns:

(string) fixed size string.

This function "fixes" the length of a string, either by truncating it on the right, or by appending enough
copies of pad-string to achieve the desired length.

Example:

a = StrFix("Henry", " ", 15)

b = StrFix("Betty", " ", 15)

c = StrFix("George", " ", 15)

Message("Spaced Names", StrCat(a, b, c))

which produces a dialog with names given 15 spaces.

See Also:

StrFill, StrLen, StrTrim

StriCmp

Compares two strings without regard to case.

Syntax:

StriCmp (string1, string2)

Parameters:

"string1", "string2" = strings to compare.

Returns:

(integer) -1, 0, or 1; depending on whether string1 is less than, equal to, or greater than
string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the other in an ANSI
sorting sequence, when case is ignored.

Example:

a = AskLine("STRICMP", "Enter a test line", "")

b = AskLine("STRICMP", "Enter another test line", "")This example in plain text:

c = StriCmp(a, b)

c = c + 1

d = StrSub("less than equal to greater than", c * 12, 12)

; Note that above string is grouped into 12-character

; chunks.

; Desired chunk is removed with the StrSub statement.

Message("STRICMP", "%a% is %d% %b%")

See Also:

StrCmp, StrIndex, StrLen, StrScan, StrSub

StrIndex

Searches a string for a substring.

Syntax:

StrIndex (string, sub-string, start, direction)

Parameters:

"string" = the string to be searched for a substring.

"substring" = the string to look for within the main string.

start = the position in the main string to begin search. The first character of a string is
position 1.

direction = the search direction. @FWDSCAN searches forward, while @BACKSCAN
searches backwards.

Returns:

(integer) position of "sub-string" within "string";

0 if not found.

This function searches for a substring within a "target" string. Starting at the "start" position, it goes
forward or backward depending on the value of the "direction" parameter. It stops when it finds the
"substring" within the "target" string, and returns its position.

A start position of 0 has special meaning depending on which direction you are scanning. For forward
searches, zero indicates the search should start at the beginning of the string. For reverse searches,
zero causes it to start at the end of the string.

Example:

instr = AskLine("STRINDEX", "Type a sentence:", "")

start = 1

end = StrIndex(instr, " ", start, @FWDSCAN)This example in plain text:

If end == 0 Then Goto error

Message("STRINDEX", StrCat("The first word is: ", StrSub(instr, start, end - 1))

Exit

:error

Message("Sorry...", "No spaces found")

See Also:

StrLen, StrScan, StrSub

StrLen

Provides the length of a string.

Syntax:

StrLen (string)

Parameters:

"string" = any text string.

Returns:

(integer) length of string.

Use this command to determine the length of a string variable or expression.

Example:

myfile = AskLine("Filename", "File to process:", "")

namlen = StrLen(myfile)

If namlen > 13 Then Message("", "Filename too long!")

See Also:

StrFill, StrFix, StrIndex, StrScan, StrTrim

StrLower

Converts a string to lowercase.

Syntax:

StrLower (string)

Parameters:

"string" = any text string.

Returns:

(string) lowercase string.

Use this command to convert a text string to lower case.

Example:

a = AskLine("STRLOWER", "Enter text", "")

b = StrLower(a)

Message(a, b)

See Also:

StriCmp, StrUpper

StrReplace

Replaces all occurances of a substring with another.

Syntax:

StrReplace (string, old, new)

Parameters:

"string" = string in which to search.

"old" = target substring.

"new" = replacement substring.

Returns:

(string) updated "string" with "old" replaced by "new"

StrReplace scans the "string", searching for occurrences of "old" and replacing each occurrence with
"new".

Example:

; Copy all INI files to clipboard

a = FileItemize("*.ini")

crlf = StrCat(Num2Char(13), Num2Char(10))

b = StrReplace(a, " ", crlf)

ClipPut(b)

StrScan

Searches string for occurrence of delimiters.

Syntax:

StrScan (string, delimiters, start, direction)

Parameters:

"string" = the string that is to be searched.

"delimiters" = a string of delimiters to search for within "string".

start = the position in the main string to begin search. The first character of a string is
position 1.

direction = the search direction. @FWDSCAN searches forward, while @BACKSCAN
searches backwards.

Returns:

(integer) position of delimiter in string, or 0 if not found.

This function searches for delimiters within a target "string". Starting at the "start" position, it goes
forward or backward depending on the value of the "direction" parameter. It stops when it finds any one
of the characters in the "delimiters" string within the target "string".

Example:

thestr = "123,456.789:abc"

start = 1

end = StrScan(thestr, ",.:", start, @FWDSCAN)

If end == 0 Then Goto error

Message("The first parameter", StrSub(thestr, start, end - start + 1))

Exit

:error

Message("Sorry...", "No delimiters found")

See Also:

StrLen, StrSub

StrSub

Extracts a substring out of an existing string.

Syntax:

StrSub (string, start, length)

Parameters:

"string" = the string from which the substring is to be extracted.

start = character position within "string" where the sub-string starts. (The first character of
the string is at position 1).

length = length of desired substring. If you specify a length of zero it will return a null string.

Returns:

(string) substring of parameter string.

This function extracts a substring from within a "target" string. Starting at the "start" position, it copies up
to "length" characters into the substring.

Example:

a = "My dog has fleas"

animal = StrSub(a, 4, 3)

Message("STRSUB", "My animal is a %animal%")

See Also:

StrLen, StrScan

StrTrim

Removes leading and trailing spaces from a character string.

Syntax:

StrTrim (string)

Parameters:

"string" = a string with unwanted spaces at the beginning and/or the end.

Returns:

(string) string devoid of leading and trailing spaces.

Use this function to remove unwanted spaces from the beginning and end of text data.

Example:

myfile = AskLine("STRTRIM", "Filename ('exit' cancels)", "")

tstexit = StrTrim(StrLower(myfile))

If tstexit == "exit" Then Goto cancel

; processing of myfile continues...

: cancel

Message("Canceled", "...by user request")

See Also:

StrFill, StrFix, StrLen

StrUpper

Converts a string to uppercase.

Syntax:

StrUpper (string)

Parameters:

"string" = any text string.

Returns:

(string) uppercase string.

Use this function to convert a text string to upper case.

Example:

a = AskLine("STRUPPER", "Enter text","")

b = StrUpper(a)

Message(a, b)

See Also:

StriCmp, StrLower

Terminate

Conditionally ends the procedure.

Syntax:

Terminate (expression, title, message)

Parameters:

"expression" = any logical expression

"title" = the title of a message box to be displayed before termination

"message" = the message in the message box

Returns:

(integer) always @TRUE

This command ends processing for the menu item or procedure if "expression" is not zero. Note that
many functions return @TRUE (1) or @FALSE (0), whick you can use to decide whether to cancel a
menu item or procedure.

If either "tltle" or "message" contains a string, a messame gox with a title and a message is displayed
before exiting.

Example:

;Unconditional Termination w/o message

;Same as "Exit"

Terminate (@TRUE,"","")

;Basically a no-op

Terminate(@FALSE,"","This will never terminate")

;Exits with message if a is less than zero

Terminate(a<0,"Error","Cannot use negative num;bers!")

;Exits w/o message if answer isn't "YES"

Terminate(answer!="YES","","")

See Also:

Display, Pause, Message

TextBox

Displays a file in a listbox on the screen and returns selected line, if any.

Syntax:

TextBox (title, filename)

Parameters:

"title" = listbox title.

"filename" = file containing contents of listbox.

Returns:

(string) = highlighted string, if any.

This function loads a file into a Windows listbox and displays the listbox to the user. TextBox has two
primary uses: First, it can be used to display multi-line messages to the user. In addition, because of its
ability to return a selected line, it may be used as a multiple choice question box. The line highlighted by
the user (if any) will be returned to the program.

If disk drive and path not are part of the filename, the current directory will be examined first, and then the
DOS path will be searched to find the desired file.

Example:

; Display WIN.INI, choose a line from it, and display the line in a dialog.

a = TextBox("Choose a line", "c:\windows\win.ini")

Display(3, "Chosen line", a)

See Also:

ItemSelect

TextBoxSort

Displays a file in a sorted listbox on the screen and returns the selected line.

Syntax:

TextBoxSort (title, filename)

Parameters:

(s) title listbox title.

(s) filename file containing contents of listbox.

Returns:

(s) highlighted string, if any.

This function loads a file into a Windows listbox, which is sorted alphabetically and displayed to the user.
The line highlighted by the user (if any) will be returned to the program. If the user does not make a
selection, a null string ("") is returned.

If disk drive and path are not part of the filename, the current directory will be examined first, and then the
DOS path will be searched to find the desired file.

TextBox is like TextBoxSelect, except that with TextBoxSelect the items in the displayed box are sorted
and with TextBox they are left unsorted.

Example:

a = TextBoxSort("Select a phone number", "phones.txt")
Display(3, "Selected number is", a)

See Also:

ItemSelect, TextBox, TextSelect

TextSelect

Allows the user to choose an item from an unsorted listbox.

Syntax:

TextSelect (title, list, delimiter)

Parameters:

(s) title the title of dialog box to display.

(s) list a string containing a list of items to choose from.

(s) delimiter a string containing the character to act as delimiter between items in the list.

Returns:

(s) the selected item.

This function displays a dialog box with a listbox inside. This listbox is filled with an unsorted list of items
taken from a string you provide to the function.

Each item in the string must be separated (delimited) by a character, which you also pass to the function.

The user selects one of the items by either doubleclicking on it, or single-clicking and pressing OK. The
item is returned as a string.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

TextSelect is like ItemSelect, except that with TextSelect the displayed box is larger and the items in the
box are not sorted alphabetically.

Example:

DirChange(DirWindows(0))

inifiles = FileItemize("*.ini")

ini = TextSelect("Select an INI file to edit", inifiles, " ")

If ini == "" Then Exit

RunZoom("notepad.exe", ini)

See Also:

AskLine, DirItemize, FileItemize, ItemSelect, TextBox, WinItemize

Then

Continues a previous If statement.

Syntax:

Then statement

Parameters:

(s) statement any valid WIL function or command.

This command continues the last-encountered If command. It provides a method of conditionally
executing multiple statements, without having to test the condition more than once. If the previous If
condition was true, the statement following the Then keyword is executed. If the previous If condition
was false, the statement following the Then keyword is ignored.

Example:

answer = AskYesNo("Financial Management", "Run WinCheck now?")
If answer == @YES Then DirChange("c:\win\check")
Then Run("wincheck.exe", "")
Then WinWaitClose("WinCheck")
Message("Okay", "Processing complete")

See Also:

Else, Goto, If... Then

Version

Returns the version number of the currently-running WIL interpreter.

Syntax:

Version ()

Parameters:

(none)

Returns:

(string) = WinBatch version number.

Use this function to determine the version of WinBatch that is running. It is useful to verify that a batch
file generated with the latest version of the language will operate properly on what may be a different
machine with a different version of WinBatch installed.

Example:

a = Version()

See Also:

Environment, DOSVersion, WinVersion

VersionDLL

Returns the version number of the WIL Interpreter currently running.

Syntax:

VersionDLL ()

Parameters:

(none)

Returns:

(s) WIL Interpreter version number.

Use this function to determine the version of the WIL Interpreter that is currently running. It is useful to
verify that a WIL program generated with the latest version of the language will operate properly on what
may be a different machine with a different version of the WIL Interpreter installed.

Example:

ver = VersionDLL()
Ifver >= "1.0c" Then Goto proceed
Message("Sorry", "WIL Interpreter version 1.0c or higher required")
Exit
:proceed
NetDialog()

See Also:

DOSVersion, Environment, Version, WinVersion

WaitForKey

Waits for a specific key to be pressed.

Syntax:

WaitForKey (key1, key2, key3, key4, key5)

Parameters:

(s) key1 - key5 five keystrokes to wait for.

Returns:

(i) position of the selected keystroke (1-5).

WaitForKey requires five parameters, each of which represents a keystroke (refer to the SendKey
function for a list of special keycodes which can be used). The WIL program will be suspended until one
of the specified keys are pressed, at which time the WaitForKey function will return a number from 1 to 5,
indicating the position of the "key" that was selected, and the program will continue. You can specify a
null string ("") for one or more of the "key" parameters if you don't need to use all five.

WaitForKey will detect its keystrokes in most, but not all, Windows applications. Any keystroke that is
pressed is also passed on to the underlying application.

Example:

k = WaitForKey("(F11)", "(F12)", "(INSERT)", "", "")

If k == 1 Then Message("WaitForKey", "You pressed the F11 key")

If k == 2 Then Message("WaitForKey", "You pressed the F12 key")

If k == 3 Then Message("WaitForKey", "You pressed the Insert key")

See Also:

IsKeyDown

WallPaper

Changes the Windows wallpaper.

Syntax:

WallPaper (bmp-name, tile)

Parameters:

"bmp-name" = Name of the BMP wallpaper file.

tile = @TRUE if wallpaper should be tiled.

@FALSE if wallpaper should not be tiled.

Returns:

(integer) always 0

This function immediately changes the Windows wallpaper. It can even be used for wallpaper "slide
shows."

Example:

DirChange("c:\windows")

a = FileItemize("*.bmp")

a = ItemSelect("Select New paper", a, " ")

tile = @FALSE

If FileSize(a) < 40000 Then tile = @TRUE

Wallpaper(a, tile)

WinActivate

Activates a previously running window.

Syntax:

WinActivate (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be activated.

Returns:

(integer) @TRUE if a window was found to activate;

@FALSE if no windows were found.

Use this function to activate windows for user input.

Example:

Run("notepad.exe", "")

Run("clock.exe", "")

WinActivate("Notepad")

See Also:

WinCloseNot, WinGetActive, WinShow

WinArrange

Arranges, tiles, and/or stacks application windows.

Syntax:

WinArrange (style)

Parameters:

style = one of the following: @STACK, @TILE (or @ARRANGE), @ROWS, or
@COLUMNS.

Returns:

(integer) always @TRUE.

Use this function to rearrange the open windows on the screen. (Any iconized programs are unaffected.)

When you specify @ROWS and you have more than four open windows, or if you specify @COLUMNS
and you have more than three open windows, WinBatch will revert to @TILE.

Example:

; Reveal all windows

WinArrange(@TILE)

See Also:

WinItemize, WinHide, WinIconize, WinPlace, WinShow, WinZoom

WinClose

Closes an open window.

Syntax:

WinClose (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be closed.

Returns:

(integer) @TRUE if a window was found to close;

@FALSE if no windows were found.

Use this function to close windows.

WinClose will not close the window which contains the currently-executing WIL file. You can, however,
use EndSession to end the current Windows session.

Example:

Run("notepad.exe", "")

WinClose("Notepad")

See Also:

WinCloseNot, WinHide, WinIconize, WinWaitClose

WinCloseNot

Closes all windows, except those provided as parameters.

Syntax:

WinCloseNot (partial-windowname [, partial-windowname]...)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. Any windows whose titles match the partial
names will stay open.

Returns:

(integer) always @TRUE.

Use this function to close all windows except those specifically listed in the parameter strings.

At least one partial windowname must be given. A null-string parameter would match all windows, or, in
other words, close nothing.

Example:

; The statement below will close all windows except:

; 1) Program Manager (starts with 'Program')

; 2) Clock (starts with 'Clo')

WinCloseNot("Program", "Clo")

See Also:

WinItemize, WinClose, WinHide, WinIconize, WinWaitClose

WinConfig

Returns WIN3 mode flags.

Syntax:

WinConfig ()

Parameters:

(none)

Returns:

(integer) sum of windows configuration bits.

Returns Windows configuration information as a number, which is the sum of the following individual bits:

1 Protected Mode

2 80286 CPU

4 80386 CPU

8 80486 CPU

16 Standard Mode

32 Enhanced Mode

64 8086 CPU

128 80186 CPU

256 Large PageFrame

512 Small PageFrame

1024 80x87 Installed

You will need to use bitwise operators to extract the individual bits.

Example:

cfg = WinConfig()

If cfg & 32 Then Display(2, "Windows Mode", "Enhanced Mode")

If cfg & 16 Then Display(2, "Windows Mode", "Standard Mode")

If !(cfg & 1) Then Display(2, "Windows Mode", "Real Mode")

cfg = WinConfig()

If cfg & 1024 Then Display(2, "Math co-processor", "Yes")

If !(cfg & 1024) Then Display(2, "Math co-processor", "No")

WinExeName

Returns the name of the executable file which created a specified window.

Syntax:

WinExeName (partial-windowname)

Parameters:

(s) partial-windowname the initial part of, or an entire, window name.

Returns:

(s) name of the E file.

Returns the name of the E file which created the first window found whose title matches "partial-
windowname".

"Partial-windowname" is the initial part of a window name, and may be a complete window name. It is
case-sensitive. You should specify enough characters so that "partial-windowname" matches only one
existing window.

Example:

prog = WinExeName("WinCheck")

WinClose("WinCheck")

Delay(5)

Run(prog, "")

See Also:

Run, WinExist, WinGetActive, WinName

WinExist

Tells if Window exists.

Syntax:

WinExist (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name.

Returns:

(integer) @TRUE if a matching window is found.

@FALSE if a matching window is not found.

Note: The partial window name you give must match the initial portion of the window name (as appears in
the title bar) exactly, including proper case (upper or lower) and punctuation.

Example:

If WinExist("Clock") == @FALSE Then RunIcon("Clock", "")

WinGetActive

Gets the title of the active window.

Syntax:

WinGetActive ()

Returns:

(string) title of active window.

Use this function to determine which window is currently active.

Example:

currentwin = WinGetActive()

See Also:

WinItemize, WinActivate

WinHelp

Calls a Windows help file.

Syntax:

WinHelp (help-file, function, keyword)

Parameters:

(s) help-file name of the Windows help file, with an optional full path.

(s) function function to perform (see below).

(s) keyword keyword to look up in the help file (if applicable), or "".

Returns:

(i) @TRUE if successful; @FALSE if unsuccessful.

This command can be used to perform several functions from a Windows help (.HLP) file. It requires that
the Windows help program WINHELP.EXE be accessible. The desired function is indicated by the
"function" parameter (which is not case-sensitive). The possible choices for "function" are:

"Contents" Brings up the Contents page for the help file.

"Key" Brings up help for the keyword specified by the "keyword" parameter. You must
specify a complete keyword, and it must be spelled correctly. If there is more than one

occurrence of "keyword" in the help file, a search box will be displayed which
allow you to select the desired topic from the available choices.

"PartialKey" Brings up help for the keyword specified by the "keyword" parameter. You may
specify a partial keyword name: if it matches more than one keyword in the help file, a
search box will be displayed which allow you to select the desired one from the available
choices. You may also specify a null string ("") for "keyword", in which case you will get a

search dialog containing all keywords in the help file.

"Command" Executes the help macro specified by the "keyword" parameter.

"Quit" Closes the WINHELP.EXE window, unless another application is still using it.

"HelpOnHelp" Brings up the help file for the Windows help program (WINHELP.HLP).

For the functions which do not require a keyword (i.e., "Contents", "Quit", and "HelpOnHelp"), specify a
null string ("") for the "keyword" parameter.

Example:

WinHelp("wil.hlp", "Key", "ItemSelect")

WinHide

Hides a window.

Syntax:

WinHide (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be hidden.

Returns:

(integer) @TRUE if a window was found to hide;

@FALSE if no windows were found.

Use this function to hide windows. The programs are still running when they are hidden.

A "partial-windowname" of "" (null string) hides the current WinBatch window.

Example:

Run("notepad.exe", "")

WinHide("Notepad")

Delay(3)

WinShow("Notepad")

See Also:

WinClose, WinIconize, WinPlace

WinIconize

Iconizes a window.

Syntax:

WinIconize (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be iconized.

Returns:

(integer) @TRUE if a window was found to iconize;

@FALSE if no windows were found.

Use this function to turn a window into an icon at the bottom of the screen.

A "partial-windowname" of "" (null string) iconizes the current WinBatch window.

Example:

Run("clock.exe", "")

WinIconize("Clo") ; partial window name used here

See Also:

WinClose, WinHide, WinPlace, WinShow, WinZoom

WinItemize

Returns a tab-delimited list of all open windows.

Syntax:

WinItemize ()

Parameters:

(none)

Returns:

(string) list of the titles of all open windows.

This function compiles a list of all the open application windows' titles and separates the titles by tabs.
This is especially useful in conjunction with the ItemSelect function, which enables the user to choose an
item from such a tab-delimited list.

Note this behaves somewhat differently than FileItemize and DirItemize, which create space-delimited
lists. This is because window titles regularly contain embedded spaces.

Example:

; Find a window

allwins = WinItemize()

htab = Num2Char(9)

mywind = ItemSelect("Windows", allwins, htab)

WinActivate(mywind)

See Also:

DirItemize, FileItemize, ItemSelect

WinMetrics

Returns Windows system information.

Syntax:

WinMetrics (request#)

Parameters:

(i) request# see below.

Returns:

(i) see below.

The request# parameter determines what piece of information will be returned.

Req# Return value

-1 Number of colors supported by video driver

0 Width of screen, in pixels

1 Height of screen, in pixels

2 Width of arrow on vertical scrollbar

3 Height of arrow on horizontal scrollbar

4 Height of window title bar

5 Width of window border lines

6 Height of window border lines

7 Width of dialog box frame

8 Height of dialog box frame

9 Height of thumb box on scrollbar

10 Width of thumb box on scrollbar

11 Width of an icon

12 Height of an icon

13 Width of a cursor

14 Height of a cursor

15 Height of a one line menu bar

16 Width of full screen window

17 Height of a full screen window

18 Height of Kanji window (Japanese)

19 Is a mouse present (0 = No, 1 = Yes)

20 Height of arrow on vertical scrollbar

21 Width of arrow on horizontal scrollbar

22 Is debug version of Windows running (0 = No, 1 = Yes)

23 Are Left and Right mouse buttons swapped (0 = No, 1 = Yes)

24 Reserved

25 Reserved

26 Reserved

27 Reserved

28 Minimum width of a window

29 Minimum height of a window

30 Width of bitmaps in title bar

31 Height of bitmaps in title bar

32 Width of sizeable window frame

33 Height of sizeable window frame

34 Minimum tracking width of a window

35 Minimum tracking height of a window

Example:

mouse = "NO"

If WinMetrics(19) == 1 Then mouse = "YES"

Message("Is there a mouse installed?", mouse)

See Also:

MouseInfo, NetGetCaps, WinConfig, WinParmGet, WinResources

WinName

Returns the name of the current WIL Interpreter window.

Syntax:

WinName ()

Parameters:

(none)

Returns:

(s) window name.

Returns the name of the current WIL interpreter (eg, Command Post or WinBatch) window.

Example:

tab = Num2Char(9)

allwins = WinItemize()

win = ItemSelect("Close window", allwins, tab)

If win == WinName() Then Goto nocando

WinClose(win)

Exit

:nocando

Message("Sorry", "I can't close myself")

See Also:

WinActivate, WinExeName, WinGetActive, WinItemize, WinTitle

WinParmGet

Returns system information.

Syntax:

WinParmGet (request#)

Parameters:

(i) request# see below.

Returns:

(s) see below.

The request# parameter determines what piece of information will be returned.

Req# Meaning Return value

1 Beeping 0 = Off, 1 = On

2 Mouse sensitivity "threshold1 threshold2 speed"

3 Border Width Width in pixels

4 Keyboard Speed Keyboard Repeat rate

5 LangDriver name of LANGUAGE.DLL

6 Horiz. Icon Spacing Spacing in pixels

7* Screen Save Timeout Timeout in seconds

8* Is screen saver enabled 0 = No, 1 = Yes

9 Desktop Grid size Grid Size

10Wallpaper BMP file BMP file name

11 Desktop Pattern Pattern codes (string of 8 space-delimited nums.)

12* Keyboard Delay Delay in milliseconds

13Vertical Icon Spacing Spacing in pixels

14IconTitleWrap 0 = No, 1 = Yes

15* MenuDropAlign 0 = Right, 1 = Left

16DoubleClickWidth Allowable horiz. movement in pixels for DblClick

17DoubleClickHeight Allowable vert. movement in pixels for DblClick

18DoubleClickSpeed Max time in millisecs between clicks for DblClick

19MouseButtonSwap 0 = Not swapped, 1 = swapped

20* Fast Task Switch 0 = Off, 1 = On

Items marked with an asterisk (*) require Windows 3.1 or higher.

Example:

If WinParmGet(8) == 1 Then Message("", "Screen saver is active")

See Also:

MouseInfo, NetGetCaps, WinConfig, WinMetrics, WinParmSet, WinResources

WinParmSet

Sets system information.

Syntax:

WinParmSet (request#, new-value, ini-control)

Parameters:

(i) request# see WinParmGet

(s) new-value see WinParmGet

(i) ini-control see below.

Returns:

(int) previous value of the setting.

See WinParmSet for a list of valid request#'s and values.

The "ini-control" parameter determines to what extent the value gets updated:

0 Set system value in memory only for future reference

1 Write new value to appropriate INI file

2 Broadcast message to all applications informing them of new value

3 Both 1 and 2

Example:

WinParmSet(9, "2", 3) ; sets desktop grid size to 2

See Also:

WallPaper, WinParmGet

WinPlace

Places a window anywhere on the screen.

Syntax:

WinPlace (x-ulc, y-ulc, x-brc, y-brc, partial-windowname)

Parameters:

x-ulc = how far from the left of the screen to place the upper-left corner (0-1000).

y-ulc = how far from the top of the screen to place the upper-left corner (0-1000).

x-brc = how far from the left of the screen to place the bottom-right corner (10-1000) or
@NORESIZE.

y-brc = how far from the top of the screen to place the bottom-right corner (10-1000) or
@NORESIZE or @ABOVEICONS.

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be moved to the new position.

Returns:

(integer) @TRUE if a window was found to move;

@FALSE if no windows were found.

Use this function to move windows on the screen. (You cannot, however, move icons or windows that
have been maximized to full screen.)

The "x-ulc", "y-ulc", "x-brc", and "y-brc" parameters are based on a logical screen that is 1000 points wide
by 1000 points high.

You can move the window without changing the width and/or height by specifying @NORESIZE for the "x-
brc" and/or "y-brc" parameters, respectively.

You can fix the bottom of the window to sit just above the line of icons along the bottom of the screen by
specifying a "y-brc" of @ABOVEICONS.

Some sample parameters:

Upper left quarter of the screen: 0, 0, 500, 500

Upper right quarter: 500, 0, 1000, 500

Center quarter: 250, 250, 750, 750

Lower left eighth: 0, 750, 500, 1000

A handy utility program is included with WinBatch, called WININFO.EXE. This program lets you take an
open window that is sized and positioned the way you like it, and automatically create the proper

WinPlace statement for you. It puts the text into the Clipboard, from which you can paste it into your
batch code:

You'll need a mouse to use WinInfo. While WinInfo is the active window, place the mouse over the
window you wish to create the WinPlace statement for, and press the spacebar. The new statement will
be placed into the Clipboard. Then press the Esc key to close WinInfo.

Example:

WinPlace(0, 0, 200, 200, "Clock")

See Also:

WinArrange, WinHide, WinIconize, WinShow, WinZoom

WinPlaceGet

Returns window coordinates.

Syntax:

WinPlaceGet (win-type, partial-windowname)

Parameters:

(i) win-type @ICON, @NORMAL, or @ZOOMED

(s) partial-windowname the initial part of, or an entire, window name.

Returns:

(s) window coordinates (see below).

This function returns the coordinates for an iconized, normal, or zoomed window.

"Partial-windowname" is the initial part of a window name, and may be a complete window name. It is
case-sensitive. You should specify enough characters so that "partial-windowname" matches only one
existing window. If it matches more than one window, the most recently accessed window which it
matches will be used.

The returned value is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)

Normal windows "upper-x upper-y lower-x lower-y"

Zoomed windows "x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

Example:

Run("clock.exe", "")

pos = WinPlaceGet(@NORMAL, "Clock")

Delay(2)

WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")

Delay(2)

WinPlaceSet(@NORMAL, "Clock", pos)

See Also:

WinGetActive, WinItemize, WinPlaceSet, WinPosition, WinState

WinPlaceSet

Sets window coordinates.

Syntax:

WinPlaceSet (win-type, partial-windowname, position-string)

Parameters:

(i) win-type @ICON, @NORMAL, or @ZOOMED

(s) partial-windowname the initial part of, or an entire, window name.

(s) position-string window coordinates (see below).

Returns:

(s) previous coordinates.

This function sets the coordinates for an iconized, normal, or zoomed window. The window does not
have to be in the desired state to set the coordinates; for example, you can set the iconized position for a
normal window so that when the window is subsequently iconized, it will go to the coordinates that you've
set.

"Partial-windowname" is the initial part of a window name, and may be a complete window name. It is
case-sensitive. You should specify enough characters so that "partial-windowname" matches only one
existing window. If it matches more than one window, the most recently accessed window which it
matches will be used.

"Position-string" is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)

Normal windows "upper-x upper-y lower-x lower-y"

Zoomed windows "x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

Example:

WinPlaceSet(@ICON, "Clock", "10 950")

WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")

WinPlaceSet(@ZOOMED, "Clock", "-5 -5")

See Also:

IconArrange, WinActivate, WinArrange, WinPlace, WinPlaceGet, WinState

WinPosition

Returns Window position.

Syntax:

WinPosition (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name.

Returns:

(string) window coordinates, delimited by commas.

Returns the current Window position information for the selected Window. It returns 4 comma-separated
numbers (see WinPlace for details).

Example:

Run("clock.exe", "") ; start Clock

WinPlace(0,0,300,300, "Clock") ; place Clock

pos = WinPosition("Clock") ; save position

delay(2)

WinPlace(200,200,300,300, "Clock") ; move Clock

delay(2)

WinPlace(%pos%, "Clock") ; restore Clock

See Also:

WinPlace

WinResources

Returns information on available memory and resources.

Syntax:

WinResources (request#)

Parameters:

(i) request# see below

Returns:

(i) see below.

The value of request# determined the piece of information returned.

Req# Return value

0 Total available memory, in bytes

1 Theoretical maximum available memory, in bytes

2 Percent of free system resources (lower of GDI and USER)

3 Percent of free GDI resources

4 Percent of free USER resources

Example:

mem = WinResources(0)

Message("Available memory", "%mem% bytes")

See Also:

WinConfig, WinMetrics, WinParmGet

WinShow

Shows a window in its "normal" state.

Syntax:

WinShow (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be shown.

Returns:

(integer) @TRUE if a window was found to show;

@FALSE if no windows were found.

Use this function to restore a window to its "normal" size and position.

A "partial-windowname" of "" (null string) restores the current WIL interpreter window.

Example:

RunZoom("notepad.exe", "")

; other processing...

WinShow("Notepad")

See Also:

WinArrange, WinHide, WinIconize, WinZoom

WinState

Returns the current state of a window.

Syntax:

WinState (partial-windowname)

Parameters:

(s) partial-windowname the initial part of, or an entire, window name.

Returns:

(i) window state (see below).

"Partial-windowname" is the initial part of a window name, and may be a complete window name. It is
case-sensitive. You should specify enough characters so that "partial-windowname" matches only one
existing window. If it matches more than one window, the most recently accessed window which it
matches will be used.

Possible return values are as follows.

Value Symbolic name Meaning

-1 Specified window exists, but is hidden

0 Specified window does not exist

1 @ICON Specified window is iconic (minimized)

2 @NORMAL Specified window is a normal window

3 @ZOOMED Specified window is zoomed (maximized)

Example:

If WinState("Notepad") == @ICON Then WinShow("Notepad")

See Also:

Run, WinExist, WinGetActive, WinHide, WinIconize, WinItemize, WinPlace, WinPlaceGet,
WinPlaceSet, WinPosition, WinShow, WinZoom

WinTitle

Changes the title of a window.

Syntax:

WinTitle (partial-windowname, new-name)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be shown.

"new-name" = the new name of the window.

Returns:

(integer) @TRUE if a window was found to rename;

@FALSE if no windows were found.

Use this function to change a window's title.

A "partial-windowname" of "" (null string) refers to the current WIL interpreter window.

Warning: Some applications may rely upon their window's title staying the same! Therefore, the
WinTitle function should be used with caution and adequate testing.

Example:

; Capitalize title of window

htab = Num2Char(9)

allwinds = WinItemize()

mywin = ItemSelect("Uppercase Windows", allwinds, htab)

WinTitle(mywin, StrUpper(mywin))

Drop(htab, allwinds, mywin)

See Also:

WinItemize

WinVersion

Provides the version number of the current Windows system.

Syntax:

WinVersion (level)

Parameters:

level = either @MAJOR or @MINOR.

Returns:

(integer) either major or minor part of the Windows version number.

Use this command to determine which version of Windows is currently running.

@MAJOR returns the integer part of the Windows version number; i.e. 1.0, 2.11, 3.0, etc.

@MINOR returns the decimal part of the Windows version number; i.e. 1.0, 2.11, 3.0, etc.

Example:

minorver = WinVersion(@MINOR)

majorver = WinVersion(@MAJOR)

Message("Windows Version", StrCat(majorver, ".", minorver))

See Also:

Version, DOSVersion

WinWaitClose

Suspends the batch file execution until a specified window has been closed.

Syntax:

WinWaitClose (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. WinWaitClose suspends execution until all
matching windows have been closed.

Returns:

(integer) @TRUE if at least one window was found to wait for;

@FALSE if no windows were found.

Use this function to suspend the batch file's execution until the user has finished using a given window
and has manually closed it.

Example:

Run("clock.exe", "")

Display(4, "Note", "Close Clock to continue")

WinWaitClose("Clock")

Message("Continuing...", "Clock closed")

See Also:

Delay, Yield

WinZoom

Maximizes a window to full-screen.

Syntax:

WinZoom (partial-windowname)

Parameters:

"partial-windowname" =

either an initial portion of, or an entire window name. The most-recently used window whose title
matches the name will be shown.

Returns:

(integer) @TRUE if a window was found to zoom;

@FALSE if no windows were found.

Use this function to "zoom" windows to full screen size.

A partial-windowname of "" (null string) zooms the current WIL interpreter window.

Example:

Run("notepad.exe", "")

WinZoom("Notepad")

Delay(3)

WinShow("Notepad")

See Also:

WinHide, WinIconize, WinPlace, WinShow

Yield

Provides time for other windows to do processing.

Syntax:

Yield

Use this command to give other running windows time to process. This command will allow each open
window to process 20 or more messages.

Example:

; run Excel and give it some time to start up

sheet = AskLine ("Excel", "File to run:", "")

Run("excel.exe", sheet)

Yield

Yield

Yield

See Also:

Delay, Exclusive

